lpv_loss.py 881 B

123456789101112131415161718192021222324252627282930
  1. import torch.nn.functional as F
  2. from torch import nn
  3. class LPVLoss(nn.Module):
  4. def __init__(self, label_smoothing=0.0, **kwargs):
  5. super(LPVLoss, self).__init__()
  6. self.label_smoothing = label_smoothing
  7. def forward(self, preds, batch):
  8. max_len = batch[2].max()
  9. tgt = batch[1][:, 1:2 + max_len]
  10. tgt = tgt.flatten(0, 1)
  11. loss = 0
  12. loss_dict = {}
  13. for i, pred in enumerate(preds):
  14. pred = pred.flatten(0, 1)
  15. loss_i = F.cross_entropy(
  16. pred,
  17. tgt,
  18. reduction='mean',
  19. label_smoothing=self.label_smoothing,
  20. ignore_index=pred.shape[1] + 1,
  21. ) # self.loss_func(pred, tgt)
  22. loss += loss_i
  23. loss_dict['loss' + str(i)] = loss_i
  24. loss_dict['loss'] = loss
  25. return loss_dict