123456789101112131415161718192021222324252627282930 |
- import torch.nn.functional as F
- from torch import nn
- class LPVLoss(nn.Module):
- def __init__(self, label_smoothing=0.0, **kwargs):
- super(LPVLoss, self).__init__()
- self.label_smoothing = label_smoothing
- def forward(self, preds, batch):
- max_len = batch[2].max()
- tgt = batch[1][:, 1:2 + max_len]
- tgt = tgt.flatten(0, 1)
- loss = 0
- loss_dict = {}
- for i, pred in enumerate(preds):
- pred = pred.flatten(0, 1)
- loss_i = F.cross_entropy(
- pred,
- tgt,
- reduction='mean',
- label_smoothing=self.label_smoothing,
- ignore_index=pred.shape[1] + 1,
- ) # self.loss_func(pred, tgt)
- loss += loss_i
- loss_dict['loss' + str(i)] = loss_i
- loss_dict['loss'] = loss
- return loss_dict
|