1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677 |
- """
- Stokes equations with an iterative solver.
- """
- # https://fenicsproject.org/docs/dolfin/2018.1.0/python/demos/
- # stokes-iterative/demo_stokes-iterative.py.html
- from dolfin import *
- mesh = UnitCubeMesh(10, 10, 10)
- # Build function space
- P2 = VectorElement("Lagrange", mesh.ufl_cell(), 2)
- P1 = FiniteElement("Lagrange", mesh.ufl_cell(), 1)
- TH = P2 * P1
- W = FunctionSpace(mesh, TH)
- # Boundaries
- def right(x, on_boundary):
- return x[0] > (1.0 - DOLFIN_EPS)
- def left(x, on_boundary):
- return x[0] < DOLFIN_EPS
- def top_bottom(x, on_boundary):
- return x[1] > 1.0 - DOLFIN_EPS or x[1] < DOLFIN_EPS
- # No-slip boundary condition for velocity
- noslip = Constant((0.0, 0.0, 0.0))
- bc0 = DirichletBC(W.sub(0), noslip, top_bottom)
- # Inflow boundary condition for velocity
- inflow = Expression(("-sin(x[1]*pi)", "0.0", "0.0"), degree=2)
- bc1 = DirichletBC(W.sub(0), inflow, right)
- # Define variational problem
- (u, p) = TrialFunctions(W)
- (v, q) = TestFunctions(W)
- f = Constant((0.0, 0.0, 0.0))
- a = inner(grad(u), grad(v)) * dx + div(v) * p * dx + q * div(u) * dx
- L = inner(f, v) * dx
- # Form for use in constructing preconditioner matrix
- b = inner(grad(u), grad(v)) * dx + p * q * dx
- # Assemble system
- A, bb = assemble_system(a, L, [bc0, bc1])
- # Assemble preconditioner system
- P, btmp = assemble_system(b, L, [bc0, bc1])
- # Create Krylov solver and AMG preconditioner
- if has_krylov_solver_method("minres"):
- krylov_method = "minres"
- elif has_krylov_solver_method("tfqmr"):
- krylov_method = "tfqmr"
- solver = KrylovSolver(krylov_method, "amg")
- # Associate operator (A) and preconditioner matrix (P)
- solver.set_operators(A, P)
- # Solve
- U = Function(W)
- solver.solve(U.vector(), bb)
- # Get sub-functions
- u, p = U.split()
- pressures = p.compute_vertex_values(mesh)
- #################################################### vedo
- from vedo.dolfin import plot
- # Plot u and p solutions on N=2 synced renderers
- plot(u, mode='mesh arrows', at=0, N=2, legend='velocity',
- scale=0.1, wireframe=1, lw=0.03, alpha=0.5, scalarbar=False).close()
- plot(p, mode='mesh').close()
|