12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273 |
- """Quantum Tunnelling effect using 4th order Runge-Kutta
- method with arbitrary potential shape."""
- from vedo import *
- nsteps = 150 # number of steps in time
- n = 300 # number of points in 1d space
- dt = 0.004 # time step
- x0 = 6 # peak initial position
- s0 = 0.75 # uncertainty on particle position
- k0 = 10 # initial momentum of the wave packet
- Vmax = 0.2 # height of the barrier (try 0 for particle in empty box)
- size = 20.0 # x axis span [0, size]
- # Uncomment below for more examples of the potential V(x).
- x = np.linspace(0, size, n+2)
- V = 0.15 * np.sin(1.5 * (x - 7)) # particle hitting a sinusoidal barrier
- # V = Vmax*(np.abs(x-11) < 0.5)-0.01 # simple square barrier potential
- # V = -0.5*(np.abs(x-11) < 1.7)-0.01 # a wide square well potential
- # V = 0.008*(x-10)**2 # elastic potential well
- # V = 0.05*(x-10) # particle on a slope bouncing back
- # V = 0.0 * x # free particle
- Psi = np.sqrt(1/s0) * np.exp(-1/2 * ((x-x0)/s0)**2 + 1j*x*k0) # wave packet
- dx2 = ((x[-1] - x[0]) / (n+2))**2 * 400 # dx**2 step, scaled
- nabla2psi = np.zeros(n+2, dtype=complex)
- def f(psi):
- # a smart numpy way to calculate the second derivative in x:
- nabla2psi[1 : n+1] = (psi[0:n] + psi[2 : n+2] - 2 * psi[1 : n+1]) / dx2
- return 1j * (nabla2psi - V*psi) # this is the RH of Schroedinger equation!
- def d_dt(psi): # find Psi(t+dt)-Psi(t) /dt with 4th order Runge-Kutta method
- k1 = f(psi)
- k2 = f(psi + dt / 2 * k1)
- k3 = f(psi + dt / 2 * k2)
- k4 = f(psi + dt * k3)
- return (k1 + 2 * k2 + 2 * k3 + k4) / 6
- plt = Plotter(interactive=False)
- pic = Image(dataurl+"images/schrod.png").pos(0, -5, -0.1).scale(0.0255)
- barrier = Line(np.stack((x, V*15, np.zeros_like(x)), axis=1), c="black", lw=2)
- barrier.name = "barrier"
- plt.show(pic, barrier, __doc__)
- lines = []
- for i in range(nsteps):
- for j in range(500):
- Psi += d_dt(Psi) * dt # integrate for a while before showing things
- A = np.real(Psi * np.conj(Psi)) * 1.5 # psi squared, probability(x)
- coords = np.stack((x, A), axis=1)
- Aline = Line(coords).color("db").linewidth(3)
- lines.append([Aline, A]) # store objects
- plt.remove("Line").add(Aline).render()
- # now show the same lines along z representing time
- plt.objects= [] # clean up internal list of objects to show
- plt.elevation(20).azimuth(20)
- barrier.color('black', 0.3)
- barrier_end = barrier.clone().pos([0,0,20])
- rib = Ribbon(barrier, barrier_end).c("black",0.1)
- plt.add(rib)
- plt.reset_camera()
- for i in range(nsteps):
- p = [0, 0, i*size/nsteps] # shift along z
- line, A = lines[i]
- line.cmap("gist_earth_r", A).pos(p)
- plt.add(pic, line).render()
- plt.interactive().close()
|