eval_rec_all_ch.py 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185
  1. import csv
  2. import os
  3. import sys
  4. import numpy as np
  5. __dir__ = os.path.dirname(os.path.abspath(__file__))
  6. sys.path.append(__dir__)
  7. sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..')))
  8. from tools.data import build_dataloader
  9. from tools.engine.config import Config
  10. from tools.engine.trainer import Trainer
  11. from tools.utility import ArgsParser
  12. def parse_args():
  13. parser = ArgsParser()
  14. args = parser.parse_args()
  15. return args
  16. def main():
  17. FLAGS = parse_args()
  18. cfg = Config(FLAGS.config)
  19. FLAGS = vars(FLAGS)
  20. opt = FLAGS.pop('opt')
  21. cfg.merge_dict(FLAGS)
  22. cfg.merge_dict(opt)
  23. msr = False
  24. if 'RatioDataSet' in cfg.cfg['Eval']['dataset']['name']:
  25. msr = True
  26. if cfg.cfg['Global']['output_dir'][-1] == '/':
  27. cfg.cfg['Global']['output_dir'] = cfg.cfg['Global']['output_dir'][:-1]
  28. if cfg.cfg['Global']['pretrained_model'] is None:
  29. cfg.cfg['Global'][
  30. 'pretrained_model'] = cfg.cfg['Global']['output_dir'] + '/best.pth'
  31. cfg.cfg['Global']['use_amp'] = False
  32. cfg.cfg['PostProcess']['with_ratio'] = True
  33. cfg.cfg['Metric']['with_ratio'] = True
  34. cfg.cfg['Metric']['max_len'] = 25
  35. cfg.cfg['Metric']['max_ratio'] = 12
  36. cfg.cfg['Eval']['dataset']['transforms'][-1]['KeepKeys'][
  37. 'keep_keys'].append('real_ratio')
  38. trainer = Trainer(cfg, mode='eval')
  39. best_model_dict = trainer.status.get('metrics', {})
  40. trainer.logger.info('metric in ckpt ***************')
  41. for k, v in best_model_dict.items():
  42. trainer.logger.info('{}:{}'.format(k, v))
  43. data_dirs_list = [[
  44. '../benchmark_bctr/benchmark_bctr_test/scene_test',
  45. '../benchmark_bctr/benchmark_bctr_test/web_test',
  46. '../benchmark_bctr/benchmark_bctr_test/document_test',
  47. '../benchmark_bctr/benchmark_bctr_test/handwriting_test'
  48. ]]
  49. cfg = cfg.cfg
  50. file_csv = open(
  51. cfg['Global']['output_dir'] + '/' +
  52. cfg['Global']['output_dir'].split('/')[-1] +
  53. '_eval_all_ch_length_ratio.csv', 'w')
  54. csv_w = csv.writer(file_csv)
  55. for data_dirs in data_dirs_list:
  56. acc_each = []
  57. acc_each_real = []
  58. acc_each_ingore_space = []
  59. acc_each_ignore_space_symbol = []
  60. acc_each_lower_ignore_space_symbol = []
  61. acc_each_num = []
  62. acc_each_dis = []
  63. each_len = {}
  64. each_ratio = {}
  65. for datadir in data_dirs:
  66. config_each = cfg.copy()
  67. if msr:
  68. config_each['Eval']['dataset']['data_dir_list'] = [datadir]
  69. else:
  70. config_each['Eval']['dataset']['data_dir'] = datadir
  71. # config_each['Eval']['dataset']['label_file_list']=[label_file_list]
  72. valid_dataloader = build_dataloader(config_each, 'Eval',
  73. trainer.logger)
  74. trainer.logger.info(
  75. f'{datadir} valid dataloader has {len(valid_dataloader)} iters'
  76. )
  77. # valid_dataloaders.append(valid_dataloader)
  78. trainer.valid_dataloader = valid_dataloader
  79. metric = trainer.eval()
  80. acc_each.append(metric['acc'] * 100)
  81. acc_each_real.append(metric['acc_real'] * 100)
  82. acc_each_ingore_space.append(metric['acc_ignore_space'] * 100)
  83. acc_each_ignore_space_symbol.append(
  84. metric['acc_ignore_space_symbol'] * 100)
  85. acc_each_lower_ignore_space_symbol.append(
  86. metric['acc_lower_ignore_space_symbol'] * 100)
  87. acc_each_dis.append(metric['norm_edit_dis'])
  88. acc_each_num.append(metric['num_samples'])
  89. trainer.logger.info('metric eval ***************')
  90. csv_w.writerow([datadir])
  91. for k, v in metric.items():
  92. trainer.logger.info('{}:{}'.format(k, v))
  93. if 'each' in k:
  94. csv_w.writerow([k] + v)
  95. if 'each_len' in k:
  96. each_len[k] = each_len.get(k, []) + [np.array(v)]
  97. if 'each_ratio' in k:
  98. each_ratio[k] = each_ratio.get(k, []) + [np.array(v)]
  99. data_name = [
  100. data_n[:-1].split('/')[-1]
  101. if data_n[-1] == '/' else data_n.split('/')[-1]
  102. for data_n in data_dirs
  103. ]
  104. csv_w.writerow(['-'] + data_name + ['arithmetic_avg'] +
  105. ['weighted_avg'])
  106. csv_w.writerow([''] + acc_each_num)
  107. avg1 = np.array(acc_each) * np.array(acc_each_num) / sum(acc_each_num)
  108. csv_w.writerow(['acc'] + acc_each + [sum(acc_each) / len(acc_each)] +
  109. [avg1.sum().tolist()])
  110. print(acc_each + [sum(acc_each) / len(acc_each)] +
  111. [avg1.sum().tolist()])
  112. avg1 = np.array(acc_each_dis) * np.array(acc_each_num) / sum(
  113. acc_each_num)
  114. csv_w.writerow(['norm_edit_dis'] + acc_each_dis +
  115. [sum(acc_each_dis) / len(acc_each)] +
  116. [avg1.sum().tolist()])
  117. avg1 = np.array(acc_each_real) * np.array(acc_each_num) / sum(
  118. acc_each_num)
  119. csv_w.writerow(['acc_real'] + acc_each_real +
  120. [sum(acc_each_real) / len(acc_each_real)] +
  121. [avg1.sum().tolist()])
  122. avg1 = np.array(acc_each_ingore_space) * np.array(acc_each_num) / sum(
  123. acc_each_num)
  124. csv_w.writerow(
  125. ['acc_ignore_space'] + acc_each_ingore_space +
  126. [sum(acc_each_ingore_space) / len(acc_each_ingore_space)] +
  127. [avg1.sum().tolist()])
  128. avg1 = np.array(acc_each_ignore_space_symbol) * np.array(
  129. acc_each_num) / sum(acc_each_num)
  130. csv_w.writerow(['acc_ignore_space_symbol'] +
  131. acc_each_ignore_space_symbol + [
  132. sum(acc_each_ignore_space_symbol) /
  133. len(acc_each_ignore_space_symbol)
  134. ] + [avg1.sum().tolist()])
  135. avg1 = np.array(acc_each_lower_ignore_space_symbol) * np.array(
  136. acc_each_num) / sum(acc_each_num)
  137. csv_w.writerow(['acc_lower_ignore_space_symbol'] +
  138. acc_each_lower_ignore_space_symbol + [
  139. sum(acc_each_lower_ignore_space_symbol) /
  140. len(acc_each_lower_ignore_space_symbol)
  141. ] + [avg1.sum().tolist()])
  142. sum_all = np.array(each_len['each_len_num']).sum(0)
  143. for k, v in each_len.items():
  144. if k != 'each_len_num':
  145. v_sum_weight = (np.array(v) *
  146. np.array(each_len['each_len_num'])).sum(0)
  147. sum_all_pad = np.where(sum_all == 0, 1., sum_all)
  148. v_all = v_sum_weight / sum_all_pad
  149. v_all = np.where(sum_all == 0, 0., v_all)
  150. csv_w.writerow([k] + v_all.tolist())
  151. else:
  152. csv_w.writerow([k] + sum_all.tolist())
  153. sum_all = np.array(each_ratio['each_ratio_num']).sum(0)
  154. for k, v in each_ratio.items():
  155. if k != 'each_ratio_num':
  156. v_sum_weight = (np.array(v) *
  157. np.array(each_ratio['each_ratio_num'])).sum(0)
  158. sum_all_pad = np.where(sum_all == 0, 1., sum_all)
  159. v_all = v_sum_weight / sum_all_pad
  160. v_all = np.where(sum_all == 0, 0., v_all)
  161. csv_w.writerow([k] + v_all.tolist())
  162. else:
  163. csv_w.writerow([k] + sum_all.tolist())
  164. file_csv.close()
  165. if __name__ == '__main__':
  166. main()