123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266 |
- import json
- import math
- import os
- import random
- import traceback
- import cv2
- import numpy as np
- from torch.utils.data import Dataset
- from openrec.preprocess import transform
- class SimpleDataSet(Dataset):
- def __init__(self, config, mode, logger, seed=None, epoch=0, task='rec'):
- super(SimpleDataSet, self).__init__()
- self.logger = logger
- self.mode = mode.lower()
- global_config = config['Global']
- dataset_config = config[mode]['dataset']
- loader_config = config[mode]['loader']
- self.delimiter = dataset_config.get('delimiter', '\t')
- label_file_list = dataset_config.pop('label_file_list')
- data_source_num = len(label_file_list)
- ratio_list = dataset_config.get('ratio_list', 1.0)
- if isinstance(ratio_list, (float, int)):
- ratio_list = [float(ratio_list)] * int(data_source_num)
- assert len(
- ratio_list
- ) == data_source_num, 'The length of ratio_list should be the same as the file_list.'
- self.data_dir = dataset_config['data_dir']
- self.do_shuffle = loader_config['shuffle']
- self.seed = seed
- logger.info(f'Initialize indexs of datasets: {label_file_list}')
- self.data_lines = self.get_image_info_list(label_file_list, ratio_list)
- self.data_idx_order_list = list(range(len(self.data_lines)))
- if self.mode == 'train' and self.do_shuffle:
- self.shuffle_data_random()
- self.set_epoch_as_seed(self.seed, dataset_config)
- if task == 'rec':
- from openrec.preprocess import create_operators
- elif task == 'det':
- from opendet.preprocess import create_operators
- self.ops = create_operators(dataset_config['transforms'],
- global_config)
- self.ext_op_transform_idx = dataset_config.get('ext_op_transform_idx',
- 2)
- self.need_reset = True in [x < 1 for x in ratio_list]
- def set_epoch_as_seed(self, seed, dataset_config):
- if self.mode == 'train':
- try:
- border_map_id = [
- index for index, dictionary in enumerate(
- dataset_config['transforms'])
- if 'MakeBorderMap' in dictionary
- ][0]
- shrink_map_id = [
- index for index, dictionary in enumerate(
- dataset_config['transforms'])
- if 'MakeShrinkMap' in dictionary
- ][0]
- dataset_config['transforms'][border_map_id]['MakeBorderMap'][
- 'epoch'] = seed if seed is not None else 0
- dataset_config['transforms'][shrink_map_id]['MakeShrinkMap'][
- 'epoch'] = seed if seed is not None else 0
- except Exception:
- return
- def get_image_info_list(self, file_list, ratio_list):
- if isinstance(file_list, str):
- file_list = [file_list]
- data_lines = []
- for idx, file in enumerate(file_list):
- with open(file, 'rb') as f:
- lines = f.readlines()
- if self.mode == 'train' or ratio_list[idx] < 1.0:
- random.seed(self.seed)
- lines = random.sample(lines,
- round(len(lines) * ratio_list[idx]))
- data_lines.extend(lines)
- return data_lines
- def shuffle_data_random(self):
- random.seed(self.seed)
- random.shuffle(self.data_lines)
- return
- def _try_parse_filename_list(self, file_name):
- # multiple images -> one gt label
- if len(file_name) > 0 and file_name[0] == '[':
- try:
- info = json.loads(file_name)
- file_name = random.choice(info)
- except:
- pass
- return file_name
- def get_ext_data(self):
- ext_data_num = 0
- for op in self.ops:
- if hasattr(op, 'ext_data_num'):
- ext_data_num = getattr(op, 'ext_data_num')
- break
- load_data_ops = self.ops[:self.ext_op_transform_idx]
- ext_data = []
- while len(ext_data) < ext_data_num:
- file_idx = self.data_idx_order_list[np.random.randint(
- self.__len__())]
- data_line = self.data_lines[file_idx]
- data_line = data_line.decode('utf-8')
- substr = data_line.strip('\n').split(self.delimiter)
- file_name = substr[0]
- file_name = self._try_parse_filename_list(file_name)
- label = substr[1]
- img_path = os.path.join(self.data_dir, file_name)
- data = {'img_path': img_path, 'label': label}
- if not os.path.exists(img_path):
- continue
- with open(data['img_path'], 'rb') as f:
- img = f.read()
- data['image'] = img
- data = transform(data, load_data_ops)
- if data is None:
- continue
- if 'polys' in data.keys():
- if data['polys'].shape[1] != 4:
- continue
- ext_data.append(data)
- return ext_data
- def __getitem__(self, idx):
- file_idx = self.data_idx_order_list[idx]
- data_line = self.data_lines[file_idx]
- try:
- data_line = data_line.decode('utf-8')
- substr = data_line.strip('\n').split(self.delimiter)
- file_name = substr[0]
- file_name = self._try_parse_filename_list(file_name)
- label = substr[1]
- img_path = os.path.join(self.data_dir, file_name)
- data = {'img_path': img_path, 'label': label}
- if not os.path.exists(img_path):
- raise Exception('{} does not exist!'.format(img_path))
- with open(data['img_path'], 'rb') as f:
- img = f.read()
- data['image'] = img
- data['ext_data'] = self.get_ext_data()
- outs = transform(data, self.ops)
- except:
- self.logger.error(
- 'When parsing line {}, error happened with msg: {}'.format(
- data_line, traceback.format_exc()))
- outs = None
- if outs is None:
- # during evaluation, we should fix the idx to get same results for many times of evaluation.
- rnd_idx = np.random.randint(self.__len__(
- )) if self.mode == 'train' else (idx + 1) % self.__len__()
- return self.__getitem__(rnd_idx)
- return outs
- def __len__(self):
- return len(self.data_idx_order_list)
- class MultiScaleDataSet(SimpleDataSet):
- def __init__(self, config, mode, logger, seed=None):
- super(MultiScaleDataSet, self).__init__(config, mode, logger, seed)
- self.ds_width = config[mode]['dataset'].get('ds_width', False)
- if self.ds_width:
- self.wh_aware()
- def wh_aware(self):
- data_line_new = []
- wh_ratio = []
- for lins in self.data_lines:
- data_line_new.append(lins)
- lins = lins.decode('utf-8')
- name, label, w, h = lins.strip('\n').split(self.delimiter)
- wh_ratio.append(float(w) / float(h))
- self.data_lines = data_line_new
- self.wh_ratio = np.array(wh_ratio)
- self.wh_ratio_sort = np.argsort(self.wh_ratio)
- self.data_idx_order_list = list(range(len(self.data_lines)))
- def resize_norm_img(self, data, imgW, imgH, padding=True):
- img = data['image']
- h = img.shape[0]
- w = img.shape[1]
- if not padding:
- resized_image = cv2.resize(img, (imgW, imgH),
- interpolation=cv2.INTER_LINEAR)
- resized_w = imgW
- else:
- ratio = w / float(h)
- if math.ceil(imgH * ratio) > imgW:
- resized_w = imgW
- else:
- resized_w = int(math.ceil(imgH * ratio))
- resized_image = cv2.resize(img, (resized_w, imgH))
- resized_image = resized_image.astype('float32')
- resized_image = resized_image.transpose((2, 0, 1)) / 255
- resized_image -= 0.5
- resized_image /= 0.5
- padding_im = np.zeros((3, imgH, imgW), dtype=np.float32)
- padding_im[:, :, :resized_w] = resized_image
- valid_ratio = min(1.0, float(resized_w / imgW))
- data['image'] = padding_im
- data['valid_ratio'] = valid_ratio
- return data
- def __getitem__(self, properties):
- # properites is a tuple, contains (width, height, index)
- img_height = properties[1]
- idx = properties[2]
- if self.ds_width and properties[3] is not None:
- wh_ratio = properties[3]
- img_width = img_height * (1 if int(round(wh_ratio)) == 0 else int(
- round(wh_ratio)))
- file_idx = self.wh_ratio_sort[idx]
- else:
- file_idx = self.data_idx_order_list[idx]
- img_width = properties[0]
- wh_ratio = None
- data_line = self.data_lines[file_idx]
- try:
- data_line = data_line.decode('utf-8')
- substr = data_line.strip('\n').split(self.delimiter)
- file_name = substr[0]
- file_name = self._try_parse_filename_list(file_name)
- label = substr[1]
- img_path = os.path.join(self.data_dir, file_name)
- data = {'img_path': img_path, 'label': label}
- if not os.path.exists(img_path):
- raise Exception('{} does not exist!'.format(img_path))
- with open(data['img_path'], 'rb') as f:
- img = f.read()
- data['image'] = img
- data['ext_data'] = self.get_ext_data()
- outs = transform(data, self.ops[:-1])
- if outs is not None:
- outs = self.resize_norm_img(outs, img_width, img_height)
- outs = transform(outs, self.ops[-1:])
- except:
- self.logger.error(
- 'When parsing line {}, error happened with msg: {}'.format(
- data_line, traceback.format_exc()))
- outs = None
- if outs is None:
- # during evaluation, we should fix the idx to get same results for many times of evaluation.
- rnd_idx = np.random.randint(self.__len__(
- )) if self.mode == 'train' else (idx + 1) % self.__len__()
- return self.__getitem__([img_width, img_height, rnd_idx, wh_ratio])
- return outs
|