123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213 |
- import io
- import math
- import random
- import cv2
- import lmdb
- import numpy as np
- from PIL import Image
- from torch.utils.data import Dataset
- from torchvision import transforms as T
- from torchvision.transforms import functional as F
- from openrec.preprocess import create_operators, transform
- class RatioDataSetTVResize(Dataset):
- def __init__(self, config, mode, logger, seed=None, epoch=1, task='rec'):
- super(RatioDataSetTVResize, self).__init__()
- self.ds_width = config[mode]['dataset'].get('ds_width', True)
- global_config = config['Global']
- dataset_config = config[mode]['dataset']
- loader_config = config[mode]['loader']
- max_ratio = loader_config.get('max_ratio', 10)
- min_ratio = loader_config.get('min_ratio', 1)
- data_dir_list = dataset_config['data_dir_list']
- self.padding = dataset_config.get('padding', True)
- self.padding_rand = dataset_config.get('padding_rand', False)
- self.padding_doub = dataset_config.get('padding_doub', False)
- self.do_shuffle = loader_config['shuffle']
- self.seed = epoch
- data_source_num = len(data_dir_list)
- ratio_list = dataset_config.get('ratio_list', 1.0)
- if isinstance(ratio_list, (float, int)):
- ratio_list = [float(ratio_list)] * int(data_source_num)
- assert (
- len(ratio_list) == data_source_num
- ), 'The length of ratio_list should be the same as the file_list.'
- self.lmdb_sets = self.load_hierarchical_lmdb_dataset(
- data_dir_list, ratio_list)
- for data_dir in data_dir_list:
- logger.info('Initialize indexs of datasets:%s' % data_dir)
- self.logger = logger
- self.data_idx_order_list = self.dataset_traversal()
- wh_ratio = np.around(np.array(self.get_wh_ratio()))
- self.wh_ratio = np.clip(wh_ratio, a_min=min_ratio, a_max=max_ratio)
- for i in range(max_ratio + 1):
- logger.info((1 * (self.wh_ratio == i)).sum())
- self.wh_ratio_sort = np.argsort(self.wh_ratio)
- self.ops = create_operators(dataset_config['transforms'],
- global_config)
- self.need_reset = True in [x < 1 for x in ratio_list]
- self.error = 0
- self.base_shape = dataset_config.get(
- 'base_shape', [[64, 64], [96, 48], [112, 40], [128, 32]])
- self.base_h = dataset_config.get('base_h', 32)
- self.interpolation = T.InterpolationMode.BICUBIC
- transforms = []
- transforms.extend([
- T.ToTensor(),
- T.Normalize(0.5, 0.5),
- ])
- self.transforms = T.Compose(transforms)
- def get_wh_ratio(self):
- wh_ratio = []
- for idx in range(self.data_idx_order_list.shape[0]):
- lmdb_idx, file_idx = self.data_idx_order_list[idx]
- lmdb_idx = int(lmdb_idx)
- file_idx = int(file_idx)
- wh_key = 'wh-%09d'.encode() % file_idx
- wh = self.lmdb_sets[lmdb_idx]['txn'].get(wh_key)
- if wh is None:
- img_key = f'image-{file_idx:09d}'.encode()
- img = self.lmdb_sets[lmdb_idx]['txn'].get(img_key)
- buf = io.BytesIO(img)
- w, h = Image.open(buf).size
- else:
- wh = wh.decode('utf-8')
- w, h = wh.split('_')
- wh_ratio.append(float(w) / float(h))
- return wh_ratio
- def load_hierarchical_lmdb_dataset(self, data_dir_list, ratio_list):
- lmdb_sets = {}
- dataset_idx = 0
- for dirpath, ratio in zip(data_dir_list, ratio_list):
- env = lmdb.open(dirpath,
- max_readers=32,
- readonly=True,
- lock=False,
- readahead=False,
- meminit=False)
- txn = env.begin(write=False)
- num_samples = int(txn.get('num-samples'.encode()))
- lmdb_sets[dataset_idx] = {
- 'dirpath': dirpath,
- 'env': env,
- 'txn': txn,
- 'num_samples': num_samples,
- 'ratio_num_samples': int(ratio * num_samples)
- }
- dataset_idx += 1
- return lmdb_sets
- def dataset_traversal(self):
- lmdb_num = len(self.lmdb_sets)
- total_sample_num = 0
- for lno in range(lmdb_num):
- total_sample_num += self.lmdb_sets[lno]['ratio_num_samples']
- data_idx_order_list = np.zeros((total_sample_num, 2))
- beg_idx = 0
- for lno in range(lmdb_num):
- tmp_sample_num = self.lmdb_sets[lno]['ratio_num_samples']
- end_idx = beg_idx + tmp_sample_num
- data_idx_order_list[beg_idx:end_idx, 0] = lno
- data_idx_order_list[beg_idx:end_idx, 1] = list(
- random.sample(range(1, self.lmdb_sets[lno]['num_samples'] + 1),
- self.lmdb_sets[lno]['ratio_num_samples']))
- beg_idx = beg_idx + tmp_sample_num
- return data_idx_order_list
- def get_img_data(self, value):
- """get_img_data."""
- if not value:
- return None
- imgdata = np.frombuffer(value, dtype='uint8')
- if imgdata is None:
- return None
- imgori = cv2.imdecode(imgdata, 1)
- if imgori is None:
- return None
- return imgori
- def resize_norm_img(self, data, gen_ratio, padding=True):
- img = data['image']
- w, h = img.size
- if self.padding_rand and random.random() < 0.5:
- padding = not padding
- imgW, imgH = self.base_shape[gen_ratio - 1] if gen_ratio <= 4 else [
- self.base_h * gen_ratio, self.base_h
- ]
- use_ratio = imgW // imgH
- if use_ratio >= (w // h) + 2:
- self.error += 1
- return None
- if not padding:
- resized_w = imgW
- else:
- ratio = w / float(h)
- if math.ceil(imgH * ratio) > imgW:
- resized_w = imgW
- else:
- resized_w = int(
- math.ceil(imgH * ratio * (random.random() + 0.5)))
- resized_w = min(imgW, resized_w)
- resized_image = F.resize(img, (imgH, resized_w),
- interpolation=self.interpolation)
- img = self.transforms(resized_image)
- if resized_w < imgW and padding:
- # img = F.pad(img, [0, 0, imgW-resized_w, 0], fill=0.)
- if self.padding_doub and random.random() < 0.5:
- img = F.pad(img, [0, 0, imgW - resized_w, 0], fill=0.)
- else:
- img = F.pad(img, [imgW - resized_w, 0, 0, 0], fill=0.)
- valid_ratio = min(1.0, float(resized_w / imgW))
- data['image'] = img
- data['valid_ratio'] = valid_ratio
- return data
- def get_lmdb_sample_info(self, txn, index):
- label_key = 'label-%09d'.encode() % index
- label = txn.get(label_key)
- if label is None:
- return None
- label = label.decode('utf-8')
- img_key = 'image-%09d'.encode() % index
- imgbuf = txn.get(img_key)
- return imgbuf, label
- def __getitem__(self, properties):
- img_width = properties[0]
- img_height = properties[1]
- idx = properties[2]
- ratio = properties[3]
- lmdb_idx, file_idx = self.data_idx_order_list[idx]
- lmdb_idx = int(lmdb_idx)
- file_idx = int(file_idx)
- sample_info = self.get_lmdb_sample_info(
- self.lmdb_sets[lmdb_idx]['txn'], file_idx)
- if sample_info is None:
- ratio_ids = np.where(self.wh_ratio == ratio)[0].tolist()
- ids = random.sample(ratio_ids, 1)
- return self.__getitem__([img_width, img_height, ids[0], ratio])
- img, label = sample_info
- data = {'image': img, 'label': label}
- outs = transform(data, self.ops[:-1])
- if outs is not None:
- outs = self.resize_norm_img(outs, ratio, padding=self.padding)
- if outs is None:
- ratio_ids = np.where(self.wh_ratio == ratio)[0].tolist()
- ids = random.sample(ratio_ids, 1)
- return self.__getitem__([img_width, img_height, ids[0], ratio])
- outs = transform(outs, self.ops[-1:])
- if outs is None:
- ratio_ids = np.where(self.wh_ratio == ratio)[0].tolist()
- ids = random.sample(ratio_ids, 1)
- return self.__getitem__([img_width, img_height, ids[0], ratio])
- return outs
- def __len__(self):
- return self.data_idx_order_list.shape[0]
|