123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081 |
- import numpy as np
- import torch
- import torch.nn.functional as F
- from .ctc_postprocess import BaseRecLabelDecode
- class VisionLANLabelDecode(BaseRecLabelDecode):
- """Convert between text-label and text-index."""
- def __init__(self,
- character_dict_path=None,
- use_space_char=False,
- **kwargs):
- super(VisionLANLabelDecode, self).__init__(character_dict_path,
- use_space_char)
- self.max_text_length = kwargs.get('max_text_length', 25)
- self.nclass = len(self.character) + 1
- def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
- """convert text-index into text-label."""
- result_list = []
- ignored_tokens = self.get_ignored_tokens()
- batch_size = len(text_index)
- for batch_idx in range(batch_size):
- selection = np.ones(len(text_index[batch_idx]), dtype=bool)
- if is_remove_duplicate:
- selection[1:] = text_index[batch_idx][1:] != text_index[
- batch_idx][:-1]
- for ignored_token in ignored_tokens:
- selection &= text_index[batch_idx] != ignored_token
- char_list = [
- self.character[text_id - 1]
- for text_id in text_index[batch_idx][selection]
- ]
- if text_prob is not None:
- conf_list = text_prob[batch_idx][selection]
- else:
- conf_list = [1] * len(selection)
- if len(conf_list) == 0:
- conf_list = [0]
- text = ''.join(char_list)
- result_list.append((text, np.mean(conf_list).tolist()))
- return result_list
- def __call__(self, preds, batch=None, *args, **kwargs):
- if len(preds) == 2: # eval mode
- net_out, length = preds
- if batch is not None:
- label = batch[1]
- else: # train mode
- net_out = preds[0]
- label, length = batch[1], batch[5]
- net_out = torch.cat([t[:l] for t, l in zip(net_out, length)],
- dim=0)
- text = []
- if not isinstance(net_out, torch.Tensor):
- net_out = torch.tensor(net_out, dtype=torch.float32)
- net_out = F.softmax(net_out, dim=1)
- for i in range(0, length.shape[0]):
- preds_idx = (net_out[int(length[:i].sum()):int(length[:i].sum() +
- length[i])].topk(1)
- [1][:, 0].tolist())
- preds_text = ''.join([
- self.character[idx - 1]
- if idx > 0 and idx <= len(self.character) else ''
- for idx in preds_idx
- ])
- preds_prob = net_out[int(length[:i].sum()):int(length[:i].sum() +
- length[i])].topk(
- 1)[0][:, 0]
- preds_prob = torch.exp(
- torch.log(preds_prob).sum() / (preds_prob.shape[0] + 1e-6))
- text.append((preds_text, float(preds_prob)))
- if batch is None:
- return text
- label = self.decode(label)
- return text, label
|