123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475 |
- import numpy as np
- import torch
- from .ctc_postprocess import BaseRecLabelDecode
- class NRTRLabelDecode(BaseRecLabelDecode):
- """Convert between text-label and text-index."""
- def __init__(self,
- character_dict_path=None,
- use_space_char=True,
- **kwargs):
- super(NRTRLabelDecode, self).__init__(character_dict_path,
- use_space_char)
- def __call__(self, preds, batch=None, *args, **kwargs):
- preds = preds['res']
- if len(preds) == 2:
- preds_id = preds[0]
- preds_prob = preds[1]
- if isinstance(preds_id, torch.Tensor):
- preds_id = preds_id.detach().cpu().numpy()
- if isinstance(preds_prob, torch.Tensor):
- preds_prob = preds_prob.detach().cpu().numpy()
- if preds_id[0][0] == 2:
- preds_idx = preds_id[:, 1:]
- preds_prob = preds_prob[:, 1:]
- else:
- preds_idx = preds_id
- text = self.decode(preds_idx,
- preds_prob,
- is_remove_duplicate=False)
- if batch is None:
- return text
- label = self.decode(batch[1][:, 1:])
- else:
- if isinstance(preds, torch.Tensor):
- preds = preds.detach().cpu().numpy()
- preds_idx = preds.argmax(axis=2)
- preds_prob = preds.max(axis=2)
- text = self.decode(preds_idx,
- preds_prob,
- is_remove_duplicate=False)
- if batch is None:
- return text
- label = self.decode(batch[1][:, 1:])
- return text, label
- def add_special_char(self, dict_character):
- dict_character = ['blank', '<unk>', '<s>', '</s>'] + dict_character
- return dict_character
- def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
- """convert text-index into text-label."""
- result_list = []
- batch_size = len(text_index)
- for batch_idx in range(batch_size):
- char_list = []
- conf_list = []
- for idx in range(len(text_index[batch_idx])):
- try:
- char_idx = self.character[int(text_index[batch_idx][idx])]
- except:
- continue
- if char_idx == '</s>': # end
- break
- char_list.append(char_idx)
- if text_prob is not None:
- conf_list.append(text_prob[batch_idx][idx])
- else:
- conf_list.append(1)
- text = ''.join(char_list)
- result_list.append((text, np.mean(conf_list).tolist()))
- return result_list
|