123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118 |
- import re
- import numpy as np
- class BaseRecLabelDecode(object):
- """Convert between text-label and text-index."""
- def __init__(self, character_dict_path=None, use_space_char=False):
- self.beg_str = 'sos'
- self.end_str = 'eos'
- self.reverse = False
- self.character_str = []
- if character_dict_path is None:
- self.character_str = '0123456789abcdefghijklmnopqrstuvwxyz'
- dict_character = list(self.character_str)
- else:
- with open(character_dict_path, 'rb') as fin:
- lines = fin.readlines()
- for line in lines:
- line = line.decode('utf-8').strip('\n').strip('\r\n')
- self.character_str.append(line)
- if use_space_char:
- self.character_str.append(' ')
- dict_character = list(self.character_str)
- if 'arabic' in character_dict_path:
- self.reverse = True
- dict_character = self.add_special_char(dict_character)
- self.dict = {}
- for i, char in enumerate(dict_character):
- self.dict[char] = i
- self.character = dict_character
- def pred_reverse(self, pred):
- pred_re = []
- c_current = ''
- for c in pred:
- if not bool(re.search('[a-zA-Z0-9 :*./%+-]', c)):
- if c_current != '':
- pred_re.append(c_current)
- pred_re.append(c)
- c_current = ''
- else:
- c_current += c
- if c_current != '':
- pred_re.append(c_current)
- return ''.join(pred_re[::-1])
- def add_special_char(self, dict_character):
- return dict_character
- def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
- """convert text-index into text-label."""
- result_list = []
- ignored_tokens = self.get_ignored_tokens()
- batch_size = len(text_index)
- for batch_idx in range(batch_size):
- selection = np.ones(len(text_index[batch_idx]), dtype=bool)
- if is_remove_duplicate:
- selection[1:] = text_index[batch_idx][1:] != text_index[
- batch_idx][:-1]
- for ignored_token in ignored_tokens:
- selection &= text_index[batch_idx] != ignored_token
- char_list = [
- self.character[text_id]
- for text_id in text_index[batch_idx][selection]
- ]
- if text_prob is not None:
- conf_list = text_prob[batch_idx][selection]
- else:
- conf_list = [1] * len(selection)
- if len(conf_list) == 0:
- conf_list = [0]
- text = ''.join(char_list)
- if self.reverse: # for arabic rec
- text = self.pred_reverse(text)
- result_list.append((text, np.mean(conf_list).tolist()))
- return result_list
- def get_ignored_tokens(self):
- return [0] # for ctc blank
- def get_character_num(self):
- return len(self.character)
- class CTCLabelDecode(BaseRecLabelDecode):
- """Convert between text-label and text-index."""
- def __init__(self,
- character_dict_path=None,
- use_space_char=False,
- **kwargs):
- super(CTCLabelDecode, self).__init__(character_dict_path,
- use_space_char)
- def __call__(self, preds, batch=None, **kwargs):
- # preds = preds['res']
- if kwargs.get('torch_tensor', True):
- preds = preds.detach().cpu().numpy()
- preds_idx = preds.argmax(axis=2)
- preds_prob = preds.max(axis=2)
- text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
- if batch is None:
- return text
- label = self.decode(batch[1])
- return text, label
- def add_special_char(self, dict_character):
- dict_character = ['blank'] + dict_character
- return dict_character
|