123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246 |
- import numpy as np
- import torch
- from torch import nn
- from torch.nn import functional as F
- from openrec.modeling.common import Activation
- class ConvBNLayer(nn.Module):
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size,
- stride=1,
- groups=1,
- act=None):
- super(ConvBNLayer, self).__init__()
- self.conv = nn.Conv2d(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=kernel_size,
- stride=stride,
- padding=(kernel_size - 1) // 2,
- groups=groups,
- bias=False,
- )
- self.bn = nn.BatchNorm2d(out_channels)
- self.act = Activation(act) if act else None
- def forward(self, x):
- x = self.conv(x)
- x = self.bn(x)
- if self.act is not None:
- x = self.act(x)
- return x
- class LocalizationNetwork(nn.Module):
- def __init__(self, in_channels, num_fiducial, loc_lr, model_name):
- super(LocalizationNetwork, self).__init__()
- self.F = num_fiducial
- F = num_fiducial
- if model_name == 'large':
- num_filters_list = [64, 128, 256, 512]
- fc_dim = 256
- else:
- num_filters_list = [16, 32, 64, 128]
- fc_dim = 64
- self.block_list = nn.ModuleList()
- for fno in range(0, len(num_filters_list)):
- num_filters = num_filters_list[fno]
- conv = ConvBNLayer(
- in_channels=in_channels,
- out_channels=num_filters,
- kernel_size=3,
- act='relu',
- )
- self.block_list.append(conv)
- if fno == len(num_filters_list) - 1:
- pool = nn.AdaptiveAvgPool2d(1)
- else:
- pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
- in_channels = num_filters
- self.block_list.append(pool)
- self.fc1 = nn.Linear(in_channels, fc_dim)
- # Init fc2 in LocalizationNetwork
- self.fc2 = nn.Linear(fc_dim, F * 2)
- initial_bias = self.get_initial_fiducials()
- initial_bias = initial_bias.reshape(-1)
- self.fc2.bias.data = torch.tensor(initial_bias, dtype=torch.float32)
- nn.init.zeros_(self.fc2.weight.data)
- self.out_channels = F * 2
- def forward(self, x):
- """
- Estimating parameters of geometric transformation
- Args:
- image: input
- Return:
- batch_C_prime: the matrix of the geometric transformation
- """
- for block in self.block_list:
- x = block(x)
- x = x.squeeze(dim=2).squeeze(dim=2)
- x = self.fc1(x)
- x = F.relu(x)
- x = self.fc2(x)
- x = x.reshape(shape=[-1, self.F, 2])
- return x
- def get_initial_fiducials(self):
- """see RARE paper Fig.
- 6 (a)
- """
- F = self.F
- ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2))
- ctrl_pts_y_top = np.linspace(0.0, -1.0, num=int(F / 2))
- ctrl_pts_y_bottom = np.linspace(1.0, 0.0, num=int(F / 2))
- ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
- ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
- initial_bias = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
- return initial_bias
- class GridGenerator(nn.Module):
- def __init__(self, in_channels, num_fiducial):
- super(GridGenerator, self).__init__()
- self.eps = 1e-6
- self.F = num_fiducial
- self.fc = nn.Linear(in_channels, 6)
- nn.init.constant_(self.fc.weight, 0)
- nn.init.constant_(self.fc.bias, 0)
- self.fc.weight.requires_grad = False
- self.fc.bias.requires_grad = False
- def forward(self, batch_C_prime, I_r_size):
- """Generate the grid for the grid_sampler.
- Args:
- batch_C_prime: the matrix of the geometric transformation
- I_r_size: the shape of the input image
- Return:
- batch_P_prime: the grid for the grid_sampler
- """
- C = self.build_C_paddle()
- P = self.build_P_paddle(I_r_size)
- inv_delta_C_tensor = self.build_inv_delta_C_paddle(C).float()
- P_hat_tensor = self.build_P_hat_paddle(C, torch.tensor(P)).float()
- batch_C_ex_part_tensor = self.get_expand_tensor(batch_C_prime)
- batch_C_prime_with_zeros = torch.cat(
- [batch_C_prime, batch_C_ex_part_tensor], dim=1)
- batch_T = torch.matmul(
- inv_delta_C_tensor.to(batch_C_prime_with_zeros.device),
- batch_C_prime_with_zeros,
- )
- batch_P_prime = torch.matmul(P_hat_tensor.to(batch_T.device), batch_T)
- return batch_P_prime
- def build_C_paddle(self):
- """Return coordinates of fiducial points in I_r; C."""
- F = self.F
- ctrl_pts_x = torch.linspace(-1.0, 1.0, int(F / 2), dtype=torch.float64)
- ctrl_pts_y_top = -1 * torch.ones([int(F / 2)], dtype=torch.float64)
- ctrl_pts_y_bottom = torch.ones([int(F / 2)], dtype=torch.float64)
- ctrl_pts_top = torch.stack([ctrl_pts_x, ctrl_pts_y_top], dim=1)
- ctrl_pts_bottom = torch.stack([ctrl_pts_x, ctrl_pts_y_bottom], dim=1)
- C = torch.cat([ctrl_pts_top, ctrl_pts_bottom], dim=0)
- return C # F x 2
- def build_P_paddle(self, I_r_size):
- I_r_height, I_r_width = I_r_size
- I_r_grid_x = (torch.arange(-I_r_width, I_r_width, 2) +
- 1.0) / torch.tensor(np.array([I_r_width]))
- I_r_grid_y = (torch.arange(-I_r_height, I_r_height, 2) +
- 1.0) / torch.tensor(np.array([I_r_height]))
- # P: self.I_r_width x self.I_r_height x 2
- P = torch.stack(torch.meshgrid(I_r_grid_x, I_r_grid_y), dim=2)
- P = torch.permute(P, [1, 0, 2])
- # n (= self.I_r_width x self.I_r_height) x 2
- return P.reshape([-1, 2])
- def build_inv_delta_C_paddle(self, C):
- """Return inv_delta_C which is needed to calculate T."""
- F = self.F
- hat_eye = torch.eye(F) # F x F
- hat_C = torch.norm(C.reshape([1, F, 2]) - C.reshape([F, 1, 2]),
- dim=2) + hat_eye
- hat_C = (hat_C**2) * torch.log(hat_C)
- delta_C = torch.cat( # F+3 x F+3
- [
- torch.cat([torch.ones((F, 1)), C, hat_C], dim=1), # F x F+3
- torch.concat([torch.zeros(
- (2, 3)), C.transpose(0, 1)], dim=1), # 2 x F+3
- torch.concat([torch.zeros(
- (1, 3)), torch.ones((1, F))], dim=1), # 1 x F+3
- ],
- axis=0,
- )
- inv_delta_C = torch.inverse(delta_C)
- return inv_delta_C # F+3 x F+3
- def build_P_hat_paddle(self, C, P):
- F = self.F
- eps = self.eps
- n = P.shape[0] # n (= self.I_r_width x self.I_r_height)
- # P_tile: n x 2 -> n x 1 x 2 -> n x F x 2
- P_tile = torch.tile(torch.unsqueeze(P, dim=1), (1, F, 1))
- C_tile = torch.unsqueeze(C, dim=0) # 1 x F x 2
- P_diff = P_tile - C_tile # n x F x 2
- # rbf_norm: n x F
- rbf_norm = torch.norm(P_diff, p=2, dim=2, keepdim=False)
- # rbf: n x F
- rbf = torch.multiply(torch.square(rbf_norm), torch.log(rbf_norm + eps))
- P_hat = torch.cat([torch.ones((n, 1)), P, rbf], dim=1)
- return P_hat # n x F+3
- def get_expand_tensor(self, batch_C_prime):
- B, H, C = batch_C_prime.shape
- batch_C_prime = batch_C_prime.reshape([B, H * C])
- batch_C_ex_part_tensor = self.fc(batch_C_prime)
- batch_C_ex_part_tensor = batch_C_ex_part_tensor.reshape([-1, 3, 2])
- return batch_C_ex_part_tensor
- class TPS(nn.Module):
- def __init__(self, in_channels, num_fiducial, loc_lr, model_name):
- super(TPS, self).__init__()
- self.loc_net = LocalizationNetwork(in_channels, num_fiducial, loc_lr,
- model_name)
- self.grid_generator = GridGenerator(self.loc_net.out_channels,
- num_fiducial)
- self.out_channels = in_channels
- def forward(self, image):
- image.stop_gradient = False
- batch_C_prime = self.loc_net(image)
- batch_P_prime = self.grid_generator(batch_C_prime, image.shape[2:])
- batch_P_prime = batch_P_prime.reshape(
- [-1, image.shape[2], image.shape[3], 2])
- is_fp16 = False
- if batch_P_prime.dtype != torch.float32:
- data_type = batch_P_prime.dtype
- image = image.float()
- batch_P_prime = batch_P_prime.float()
- is_fp16 = True
- batch_I_r = F.grid_sample(image, grid=batch_P_prime)
- if is_fp16:
- batch_I_r = batch_I_r.astype(data_type)
- return batch_I_r
|