123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136 |
- """This code is refer from:
- https://github.com/Canjie-Luo/MORAN_v2
- """
- import numpy as np
- import torch
- import torch.nn as nn
- from torch.nn import functional as F
- class MORN(nn.Module):
- def __init__(self, in_channels, target_shape=[32, 100], enhance=1):
- super(MORN, self).__init__()
- self.targetH = target_shape[0]
- self.targetW = target_shape[1]
- self.enhance = enhance
- self.out_channels = in_channels
- self.cnn = nn.Sequential(nn.MaxPool2d(2, 2),
- nn.Conv2d(in_channels, 64, 3, 1, 1),
- nn.BatchNorm2d(64), nn.ReLU(True),
- nn.MaxPool2d(2,
- 2), nn.Conv2d(64, 128, 3, 1, 1),
- nn.BatchNorm2d(128), nn.ReLU(True),
- nn.MaxPool2d(2,
- 2), nn.Conv2d(128, 64, 3, 1, 1),
- nn.BatchNorm2d(64), nn.ReLU(True),
- nn.Conv2d(64, 16, 3, 1, 1),
- nn.BatchNorm2d(16), nn.ReLU(True),
- nn.Conv2d(16, 1, 3, 1, 1), nn.BatchNorm2d(1))
- self.pool = nn.MaxPool2d(2, 1)
- h_list = np.arange(self.targetH) * 2. / (self.targetH - 1) - 1
- w_list = np.arange(self.targetW) * 2. / (self.targetW - 1) - 1
- grid = np.meshgrid(w_list, h_list, indexing='ij')
- grid = np.stack(grid, axis=-1)
- grid = np.transpose(grid, (1, 0, 2))
- grid = np.expand_dims(grid, 0)
- self.grid = nn.Parameter(
- torch.from_numpy(grid).float(),
- requires_grad=False,
- )
- def forward(self, x):
- bs = x.shape[0]
- grid = self.grid.tile([bs, 1, 1, 1])
- grid_x = self.grid[:, :, :, 0].unsqueeze(3).tile([bs, 1, 1, 1])
- grid_y = self.grid[:, :, :, 1].unsqueeze(3).tile([bs, 1, 1, 1])
- x_small = F.upsample(x,
- size=(self.targetH, self.targetW),
- mode='bilinear')
- offsets = self.cnn(x_small)
- offsets_posi = F.relu(offsets, inplace=False)
- offsets_nega = F.relu(-offsets, inplace=False)
- offsets_pool = self.pool(offsets_posi) - self.pool(offsets_nega)
- offsets_grid = F.grid_sample(offsets_pool, grid)
- offsets_grid = offsets_grid.permute(0, 2, 3, 1).contiguous()
- offsets_x = torch.cat([grid_x, grid_y + offsets_grid], 3)
- x_rectified = F.grid_sample(x, offsets_x)
- for iteration in range(self.enhance):
- offsets = self.cnn(x_rectified)
- offsets_posi = F.relu(offsets, inplace=False)
- offsets_nega = F.relu(-offsets, inplace=False)
- offsets_pool = self.pool(offsets_posi) - self.pool(offsets_nega)
- offsets_grid += F.grid_sample(offsets_pool,
- grid).permute(0, 2, 3,
- 1).contiguous()
- offsets_x = torch.cat([grid_x, grid_y + offsets_grid], 3)
- x_rectified = F.grid_sample(x, offsets_x)
- # if debug:
- # offsets_mean = torch.mean(offsets_grid.view(x.size(0), -1), 1)
- # offsets_max, _ = torch.max(offsets_grid.view(x.size(0), -1), 1)
- # offsets_min, _ = torch.min(offsets_grid.view(x.size(0), -1), 1)
- # import matplotlib.pyplot as plt
- # from colour import Color
- # from torchvision import transforms
- # import cv2
- # alpha = 0.7
- # density_range = 256
- # color_map = np.empty([self.targetH, self.targetW, 3], dtype=int)
- # cmap = plt.get_cmap("rainbow")
- # blue = Color("blue")
- # hex_colors = list(blue.range_to(Color("red"), density_range))
- # rgb_colors = [[rgb * 255 for rgb in color.rgb] for color in hex_colors][::-1]
- # to_pil_image = transforms.ToPILImage()
- # for i in range(x.size(0)):
- # img_small = x_small[i].data.cpu().mul_(0.5).add_(0.5)
- # img = to_pil_image(img_small)
- # img = np.array(img)
- # if len(img.shape) == 2:
- # img = cv2.merge([img.copy()]*3)
- # img_copy = img.copy()
- # v_max = offsets_max.data[i]
- # v_min = offsets_min.data[i]
- # if self.cuda:
- # img_offsets = (offsets_grid[i]).view(1, self.targetH, self.targetW).data.cuda().add_(-v_min).mul_(1./(v_max-v_min))
- # else:
- # img_offsets = (offsets_grid[i]).view(1, self.targetH, self.targetW).data.cpu().add_(-v_min).mul_(1./(v_max-v_min))
- # img_offsets = to_pil_image(img_offsets)
- # img_offsets = np.array(img_offsets)
- # color_map = np.empty([self.targetH, self.targetW, 3], dtype=int)
- # for h_i in range(self.targetH):
- # for w_i in range(self.targetW):
- # color_map[h_i][w_i] = rgb_colors[int(img_offsets[h_i, w_i]/256.*density_range)]
- # color_map = color_map.astype(np.uint8)
- # cv2.addWeighted(color_map, alpha, img_copy, 1-alpha, 0, img_copy)
- # img_processed = x_rectified[i].data.cpu().mul_(0.5).add_(0.5)
- # img_processed = to_pil_image(img_processed)
- # img_processed = np.array(img_processed)
- # if len(img_processed.shape) == 2:
- # img_processed = cv2.merge([img_processed.copy()]*3)
- # total_img = np.ones([self.targetH, self.targetW*3+10, 3], dtype=int)*255
- # total_img[0:self.targetH, 0:self.targetW] = img
- # total_img[0:self.targetH, self.targetW+5:2*self.targetW+5] = img_copy
- # total_img[0:self.targetH, self.targetW*2+10:3*self.targetW+10] = img_processed
- # total_img = cv2.resize(total_img.astype(np.uint8), (300, 50))
- # # cv2.imshow("Input_Offsets_Output", total_img)
- # # cv2.waitKey()
- # return x_rectified, total_img
- return x_rectified
|