123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262 |
- import itertools
- import math
- import numpy as np
- import torch
- from torch import nn
- from torch.nn import functional as F
- def conv3x3_block(in_planes, out_planes, stride=1):
- """3x3 convolution with padding."""
- conv_layer = nn.Conv2d(in_planes,
- out_planes,
- kernel_size=3,
- stride=1,
- padding=1)
- block = nn.Sequential(
- conv_layer,
- nn.BatchNorm2d(out_planes),
- nn.ReLU(inplace=True),
- )
- return block
- class STNHead(nn.Module):
- def __init__(self, in_planes, num_ctrlpoints, activation='none'):
- super(STNHead, self).__init__()
- self.in_planes = in_planes
- self.num_ctrlpoints = num_ctrlpoints
- self.activation = activation
- self.stn_convnet = nn.Sequential(
- conv3x3_block(in_planes, 32), # 32*64
- nn.MaxPool2d(kernel_size=2, stride=2),
- conv3x3_block(32, 64), # 16*32
- nn.MaxPool2d(kernel_size=2, stride=2),
- conv3x3_block(64, 128), # 8*16
- nn.MaxPool2d(kernel_size=2, stride=2),
- conv3x3_block(128, 256), # 4*8
- nn.MaxPool2d(kernel_size=2, stride=2),
- conv3x3_block(256, 256), # 2*4,
- nn.MaxPool2d(kernel_size=2, stride=2),
- conv3x3_block(256, 256)) # 1*2
- self.stn_fc1 = nn.Sequential(nn.Linear(2 * 256, 512),
- nn.BatchNorm1d(512),
- nn.ReLU(inplace=True))
- self.stn_fc2 = nn.Linear(512, num_ctrlpoints * 2)
- self.init_weights(self.stn_convnet)
- self.init_weights(self.stn_fc1)
- self.init_stn(self.stn_fc2)
- def init_weights(self, module):
- for m in module.modules():
- if isinstance(m, nn.Conv2d):
- n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
- m.weight.data.normal_(0, math.sqrt(2. / n))
- if m.bias is not None:
- m.bias.data.zero_()
- elif isinstance(m, nn.BatchNorm2d):
- m.weight.data.fill_(1)
- m.bias.data.zero_()
- elif isinstance(m, nn.Linear):
- m.weight.data.normal_(0, 0.001)
- m.bias.data.zero_()
- def init_stn(self, stn_fc2):
- margin = 0.01
- sampling_num_per_side = int(self.num_ctrlpoints / 2)
- ctrl_pts_x = np.linspace(margin, 1. - margin, sampling_num_per_side)
- ctrl_pts_y_top = np.ones(sampling_num_per_side) * margin
- ctrl_pts_y_bottom = np.ones(sampling_num_per_side) * (1 - margin)
- ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
- ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
- ctrl_points = np.concatenate([ctrl_pts_top, ctrl_pts_bottom],
- axis=0).astype(np.float32)
- if self.activation == 'none':
- pass
- elif self.activation == 'sigmoid':
- ctrl_points = -np.log(1. / ctrl_points - 1.)
- stn_fc2.weight.data.zero_()
- stn_fc2.bias.data = torch.Tensor(ctrl_points).view(-1)
- def forward(self, x):
- x = self.stn_convnet(x)
- batch_size, _, h, w = x.size()
- x = x.view(batch_size, -1)
- img_feat = self.stn_fc1(x)
- x = self.stn_fc2(0.1 * img_feat)
- if self.activation == 'sigmoid':
- x = F.sigmoid(x)
- x = x.view(-1, self.num_ctrlpoints, 2)
- return x
- def grid_sample(input, grid, canvas=None):
- output = F.grid_sample(input, grid)
- if canvas is None:
- return output
- else:
- input_mask = input.data.new(input.size()).fill_(1)
- output_mask = F.grid_sample(input_mask, grid)
- padded_output = output * output_mask + canvas * (1 - output_mask)
- return padded_output
- # phi(x1, x2) = r^2 * log(r), where r = ||x1 - x2||_2
- def compute_partial_repr(input_points, control_points):
- N = input_points.size(0)
- M = control_points.size(0)
- pairwise_diff = input_points.view(N, 1, 2) - control_points.view(1, M, 2)
- # original implementation, very slow
- # pairwise_dist = torch.sum(pairwise_diff ** 2, dim = 2) # square of distance
- pairwise_diff_square = pairwise_diff * pairwise_diff
- pairwise_dist = pairwise_diff_square[:, :, 0] + pairwise_diff_square[:, :,
- 1]
- repr_matrix = 0.5 * pairwise_dist * torch.log(pairwise_dist)
- # fix numerical error for 0 * log(0), substitute all nan with 0
- mask = repr_matrix != repr_matrix
- repr_matrix.masked_fill_(mask, 0)
- return repr_matrix
- # output_ctrl_pts are specified, according to our task.
- def build_output_control_points(num_control_points, margins):
- margin_x, margin_y = margins
- num_ctrl_pts_per_side = num_control_points // 2
- ctrl_pts_x = np.linspace(margin_x, 1.0 - margin_x, num_ctrl_pts_per_side)
- ctrl_pts_y_top = np.ones(num_ctrl_pts_per_side) * margin_y
- ctrl_pts_y_bottom = np.ones(num_ctrl_pts_per_side) * (1.0 - margin_y)
- ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
- ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
- # ctrl_pts_top = ctrl_pts_top[1:-1,:]
- # ctrl_pts_bottom = ctrl_pts_bottom[1:-1,:]
- output_ctrl_pts_arr = np.concatenate([ctrl_pts_top, ctrl_pts_bottom],
- axis=0)
- output_ctrl_pts = torch.Tensor(output_ctrl_pts_arr)
- return output_ctrl_pts
- class TPSSpatialTransformer(nn.Module):
- def __init__(
- self,
- output_image_size,
- num_control_points,
- margins,
- ):
- super(TPSSpatialTransformer, self).__init__()
- self.output_image_size = output_image_size
- self.num_control_points = num_control_points
- self.margins = margins
- self.target_height, self.target_width = output_image_size
- target_control_points = build_output_control_points(
- num_control_points, margins)
- N = num_control_points
- # N = N - 4
- # create padded kernel matrix
- forward_kernel = torch.zeros(N + 3, N + 3)
- target_control_partial_repr = compute_partial_repr(
- target_control_points, target_control_points)
- forward_kernel[:N, :N].copy_(target_control_partial_repr)
- forward_kernel[:N, -3].fill_(1)
- forward_kernel[-3, :N].fill_(1)
- forward_kernel[:N, -2:].copy_(target_control_points)
- forward_kernel[-2:, :N].copy_(target_control_points.transpose(0, 1))
- # compute inverse matrix
- inverse_kernel = torch.inverse(forward_kernel)
- # create target cordinate matrix
- HW = self.target_height * self.target_width
- target_coordinate = list(
- itertools.product(range(self.target_height),
- range(self.target_width)))
- target_coordinate = torch.Tensor(target_coordinate) # HW x 2
- Y, X = target_coordinate.split(1, dim=1)
- Y = Y / (self.target_height - 1)
- X = X / (self.target_width - 1)
- target_coordinate = torch.cat([X, Y],
- dim=1) # convert from (y, x) to (x, y)
- target_coordinate_partial_repr = compute_partial_repr(
- target_coordinate, target_control_points)
- target_coordinate_repr = torch.cat([
- target_coordinate_partial_repr,
- torch.ones(HW, 1), target_coordinate
- ],
- dim=1)
- # register precomputed matrices
- self.register_buffer('inverse_kernel', inverse_kernel)
- self.register_buffer('padding_matrix', torch.zeros(3, 2))
- self.register_buffer('target_coordinate_repr', target_coordinate_repr)
- self.register_buffer('target_control_points', target_control_points)
- def forward(self, input, source_control_points):
- assert source_control_points.ndimension() == 3
- assert source_control_points.size(1) == self.num_control_points
- assert source_control_points.size(2) == 2
- batch_size = source_control_points.size(0)
- Y = torch.cat([
- source_control_points,
- self.padding_matrix.expand(batch_size, 3, 2)
- ], 1)
- mapping_matrix = torch.matmul(self.inverse_kernel, Y)
- source_coordinate = torch.matmul(self.target_coordinate_repr,
- mapping_matrix)
- grid = source_coordinate.view(-1, self.target_height,
- self.target_width, 2)
- grid = torch.clamp(
- grid, 0, 1) # the source_control_points may be out of [0, 1].
- # the input to grid_sample is normalized [-1, 1], but what we get is [0, 1]
- grid = 2.0 * grid - 1.0
- output_maps = grid_sample(input, grid, canvas=None)
- return output_maps
- class Aster_TPS(nn.Module):
- def __init__(
- self,
- in_channels,
- tps_inputsize=[32, 64],
- tps_outputsize=[32, 100],
- num_control_points=20,
- tps_margins=[0.05, 0.05],
- ) -> None:
- super().__init__()
- self.in_channels = in_channels
- #TODO
- self.out_channels = in_channels
- self.tps_inputsize = tps_inputsize
- self.num_control_points = num_control_points
- self.stn_head = STNHead(
- in_planes=3,
- num_ctrlpoints=num_control_points,
- )
- self.tps = TPSSpatialTransformer(
- output_image_size=tps_outputsize,
- num_control_points=num_control_points,
- margins=tps_margins,
- )
- def forward(self, img):
- stn_input = F.interpolate(img,
- self.tps_inputsize,
- mode='bilinear',
- align_corners=True)
- ctrl_points = self.stn_head(stn_input)
- img = self.tps(img, ctrl_points)
- return img
|