123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616 |
- import numpy as np
- import torch
- from torch import nn
- from torch.nn.init import kaiming_normal_, ones_, trunc_normal_, zeros_
- from openrec.modeling.common import DropPath, Identity, Mlp
- class ConvBNLayer(nn.Module):
- def __init__(
- self,
- in_channels,
- out_channels,
- kernel_size=3,
- stride=1,
- padding=0,
- bias=False,
- groups=1,
- act=nn.GELU,
- ):
- super().__init__()
- self.conv = nn.Conv2d(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=kernel_size,
- stride=stride,
- padding=padding,
- groups=groups,
- bias=bias,
- )
- self.norm = nn.BatchNorm2d(out_channels)
- self.act = act()
- def forward(self, inputs):
- out = self.conv(inputs)
- out = self.norm(out)
- out = self.act(out)
- return out
- class ConvMixer(nn.Module):
- def __init__(
- self,
- dim,
- num_heads=8,
- HW=[8, 25],
- local_k=[3, 3],
- ):
- super().__init__()
- self.HW = HW
- self.dim = dim
- self.local_mixer = nn.Conv2d(dim,
- dim,
- local_k,
- 1, [local_k[0] // 2, local_k[1] // 2],
- groups=num_heads)
- def forward(self, x, w):
- x = x.transpose(1, 2).reshape([x.shape[0], self.dim, -1, w])
- x = self.local_mixer(x)
- x = x.flatten(2).transpose(1, 2)
- return x
- class ConvMlp(nn.Module):
- def __init__(
- self,
- in_features,
- hidden_features=None,
- out_features=None,
- act_layer=nn.GELU,
- drop=0.0,
- groups=1,
- ):
- super().__init__()
- out_features = out_features or in_features
- hidden_features = hidden_features or in_features
- self.fc1 = nn.Conv2d(in_features, hidden_features, 1, groups=groups)
- self.act = act_layer()
- self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
- self.drop = nn.Dropout(drop)
- def forward(self, x):
- x = self.fc1(x)
- x = self.act(x)
- x = self.drop(x)
- x = self.fc2(x)
- x = self.drop(x)
- return x
- class ConvBlock(nn.Module):
- def __init__(
- self,
- dim,
- num_heads,
- mixer='Global',
- local_mixer=[7, 11],
- HW=None,
- mlp_ratio=4.0,
- qkv_bias=False,
- qk_scale=None,
- drop=0.0,
- attn_drop=0.0,
- drop_path=0.0,
- act_layer=nn.GELU,
- norm_layer='nn.LayerNorm',
- eps=1e-6,
- prenorm=True,
- ):
- super().__init__()
- self.norm1 = nn.BatchNorm2d(dim)
- self.local_mixer = nn.Conv2d(dim,
- dim, [5, 5],
- 1, [2, 2],
- groups=num_heads)
- self.drop_path = DropPath(drop_path) if drop_path > 0.0 else Identity()
- self.norm2 = nn.BatchNorm2d(dim)
- mlp_hidden_dim = int(dim * mlp_ratio)
- self.mlp = ConvMlp(in_features=dim,
- hidden_features=mlp_hidden_dim,
- act_layer=act_layer,
- drop=drop)
- self.prenorm = prenorm
- def forward(self, x):
- x = self.norm1(x + self.drop_path(self.local_mixer(x)))
- x = self.norm2(x + self.drop_path(self.mlp(x)))
- return x
- class Attention(nn.Module):
- def __init__(
- self,
- dim,
- num_heads=8,
- mixer='Global',
- HW=None,
- local_k=[7, 11],
- qkv_bias=False,
- qk_scale=None,
- attn_drop=0.0,
- proj_drop=0.0,
- ):
- super().__init__()
- self.num_heads = num_heads
- self.dim = dim
- self.head_dim = dim // num_heads
- self.scale = qk_scale or self.head_dim**-0.5
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
- self.attn_drop = nn.Dropout(attn_drop)
- self.proj = nn.Linear(dim, dim)
- self.proj_drop = nn.Dropout(proj_drop)
- self.HW = HW
- if HW is not None:
- H = HW[0]
- W = HW[1]
- if W == -1:
- W = 300
- self.C = dim
- self.H = H
- self.W = W
- if mixer == 'Local' and HW is not None:
- if HW[1] == -1:
- wk = 29
- else:
- wk = local_k[1]
- self.wk = wk
- mask = torch.ones(W, W, dtype=torch.float32, requires_grad=False)
- for w in range(0, W):
- b_w = w - wk // 2 if w - wk // 2 > 0 else 0
- if b_w > W - wk:
- b_w = W - wk
- mask[w, b_w:b_w + wk] = 0.0
- mask[mask >= 1] = -np.inf
- self.register_buffer('mask', mask)
- self.mixer = mixer
- def forward(self, x, w):
- B, N, _ = x.shape
- h = N // w
- qkv = self.qkv(x).reshape(B, N, 3, self.num_heads,
- self.head_dim).permute(2, 0, 3, 1, 4)
- q, k, v = qkv.unbind(0)
- q = q * self.scale
- attn = q @ k.transpose(-2, -1)
- if self.mixer == 'Local' and w >= 32:
- mask1 = self.mask[(self.W - w) // 2:-(self.W - w) // 2,
- (self.W - w) // 2:-(self.W - w) // 2]
- mask1[:(self.wk // 2 + 1)] = self.mask[:(self.wk // 2 + 1), :w]
- mask1[-(self.wk // 2 + 1):] = self.mask[-(self.wk // 2 + 1):, -w:]
- attn += mask1[None, None, :, :].tile(B, 1, h, h)
- attn = attn.softmax(dim=-1)
- attn = self.attn_drop(attn)
- x = attn @ v
- x = x.transpose(1, 2).reshape(B, N, self.dim)
- x = self.proj(x)
- x = self.proj_drop(x)
- return x
- class Block(nn.Module):
- def __init__(
- self,
- dim,
- num_heads,
- mixer='Global',
- local_mixer=[7, 11],
- HW=None,
- mlp_ratio=4.0,
- qkv_bias=False,
- qk_scale=None,
- drop=0.0,
- attn_drop=0.0,
- drop_path=0.0,
- act_layer=nn.GELU,
- norm_layer='nn.LayerNorm',
- eps=1e-6,
- ):
- super().__init__()
- if isinstance(norm_layer, str):
- self.norm1 = eval(norm_layer)(dim, eps=eps)
- else:
- self.norm1 = norm_layer(dim)
- if mixer == 'Global' or mixer == 'Local':
- self.mixer = Attention(
- dim,
- num_heads=num_heads,
- mixer=mixer,
- HW=HW,
- local_k=local_mixer,
- qkv_bias=qkv_bias,
- qk_scale=qk_scale,
- attn_drop=attn_drop,
- proj_drop=drop,
- )
- elif mixer == 'Conv':
- self.mixer = ConvMixer(dim,
- num_heads=num_heads,
- HW=HW,
- local_k=local_mixer)
- else:
- raise TypeError('The mixer must be one of [Global, Local, Conv]')
- self.drop_path = DropPath(drop_path) if drop_path > 0.0 else Identity()
- if isinstance(norm_layer, str):
- self.norm2 = eval(norm_layer)(dim, eps=eps)
- else:
- self.norm2 = norm_layer(dim)
- mlp_hidden_dim = int(dim * mlp_ratio)
- self.mlp_ratio = mlp_ratio
- self.mlp = Mlp(
- in_features=dim,
- hidden_features=mlp_hidden_dim,
- act_layer=act_layer,
- drop=drop,
- )
- def forward(self, x, w):
- x = self.norm1(x + self.drop_path(self.mixer(x, w)))
- x = self.norm2(x + self.drop_path(self.mlp(x)))
- return x, w
- class PatchEmbed(nn.Module):
- """Image to Patch Embedding."""
- def __init__(
- self,
- img_size=[32, 100],
- in_channels=3,
- embed_dim=768,
- sub_num=2,
- patch_size=[4, 4],
- mode='pope',
- ):
- super().__init__()
- num_patches = (img_size[1] // (2**sub_num)) * (img_size[0] //
- (2**sub_num))
- self.img_size = img_size
- self.num_patches = num_patches
- self.embed_dim = embed_dim
- self.norm = None
- if mode == 'pope':
- if sub_num == 2:
- self.proj = nn.Sequential(
- ConvBNLayer(
- in_channels=in_channels,
- out_channels=embed_dim // 2,
- kernel_size=3,
- stride=2,
- padding=1,
- act=nn.GELU,
- bias=None,
- ),
- ConvBNLayer(
- in_channels=embed_dim // 2,
- out_channels=embed_dim,
- kernel_size=3,
- stride=2,
- padding=1,
- act=nn.GELU,
- bias=None,
- ),
- )
- if sub_num == 3:
- self.proj = nn.Sequential(
- ConvBNLayer(
- in_channels=in_channels,
- out_channels=embed_dim // 4,
- kernel_size=3,
- stride=2,
- padding=1,
- act=nn.GELU,
- bias=None,
- ),
- ConvBNLayer(
- in_channels=embed_dim // 4,
- out_channels=embed_dim // 2,
- kernel_size=3,
- stride=2,
- padding=1,
- act=nn.GELU,
- bias=None,
- ),
- ConvBNLayer(
- in_channels=embed_dim // 2,
- out_channels=embed_dim,
- kernel_size=3,
- stride=2,
- padding=1,
- act=nn.GELU,
- bias=None,
- ),
- )
- elif mode == 'linear':
- self.proj = nn.Conv2d(1,
- embed_dim,
- kernel_size=patch_size,
- stride=patch_size)
- self.num_patches = img_size[0] // patch_size[0] * img_size[
- 1] // patch_size[1]
- def forward(self, x):
- x = self.proj(x)
- return x
- class SubSample(nn.Module):
- def __init__(
- self,
- in_channels,
- out_channels,
- types='Pool',
- stride=[2, 1],
- sub_norm='nn.LayerNorm',
- act=None,
- ):
- super().__init__()
- self.types = types
- if types == 'Pool':
- self.avgpool = nn.AvgPool2d(kernel_size=[3, 5],
- stride=stride,
- padding=[1, 2])
- self.maxpool = nn.MaxPool2d(kernel_size=[3, 5],
- stride=stride,
- padding=[1, 2])
- self.proj = nn.Linear(in_channels, out_channels)
- else:
- self.conv = nn.Conv2d(in_channels,
- out_channels,
- kernel_size=3,
- stride=stride,
- padding=1)
- self.dim = in_channels
- self.norm = eval(sub_norm)(out_channels)
- if act is not None:
- self.act = act()
- else:
- self.act = None
- def forward(self, x, w):
- if self.types == 'Pool':
- x1 = self.avgpool(x)
- x2 = self.maxpool(x)
- x = (x1 + x2) * 0.5
- out = self.proj(x.flatten(2).transpose(1, 2))
- else:
- x = x.transpose(1, 2).reshape([x.shape[0], self.dim, -1, w])
- x = self.conv(x)
- out = x.flatten(2).transpose(1, 2)
- out = self.norm(out)
- if self.act is not None:
- out = self.act(out)
- return out, w
- class FlattenTranspose(nn.Module):
- def forward(self, x):
- return x.flatten(2).transpose(1, 2)
- class DownSConv(nn.Module):
- def __init__(self, in_channels, out_channels):
- super().__init__()
- self.conv = nn.Conv2d(in_channels,
- out_channels,
- 3,
- stride=[2, 1],
- padding=1)
- self.norm = nn.LayerNorm(out_channels)
- def forward(self, x, w):
- B, N, C = x.shape
- x = x.transpose(1, 2).reshape(B, C, -1, w)
- x = self.conv(x)
- w = x.shape[-1]
- x = self.norm(x.flatten(2).transpose(1, 2))
- return x, w
- class SVTRNet2DPos(nn.Module):
- def __init__(
- self,
- img_size=[32, -1],
- in_channels=3,
- embed_dim=[64, 128, 256],
- depth=[3, 6, 3],
- num_heads=[2, 4, 8],
- mixer=['Local'] * 6 +
- ['Global'] * 6, # Local atten, Global atten, Conv
- local_mixer=[[7, 11], [7, 11], [7, 11]],
- patch_merging='Conv', # Conv, Pool, None
- pool_size=[2, 1],
- max_size=[16, 32],
- mlp_ratio=4,
- qkv_bias=True,
- qk_scale=None,
- drop_rate=0.0,
- last_drop=0.1,
- attn_drop_rate=0.0,
- drop_path_rate=0.1,
- norm_layer='nn.LayerNorm',
- eps=1e-6,
- act='nn.GELU',
- last_stage=True,
- sub_num=2,
- use_first_sub=True,
- flatten=False,
- **kwargs,
- ):
- super().__init__()
- self.img_size = img_size
- self.embed_dim = embed_dim
- self.flatten = flatten
- patch_merging = None if patch_merging != 'Conv' and patch_merging != 'Pool' else patch_merging
- self.patch_embed = PatchEmbed(
- img_size=img_size,
- in_channels=in_channels,
- embed_dim=embed_dim[0],
- sub_num=sub_num,
- )
- if img_size[1] == -1:
- self.HW = [img_size[0] // (2**sub_num), -1]
- else:
- self.HW = [
- img_size[0] // (2**sub_num), img_size[1] // (2**sub_num)
- ]
- pos_embed = torch.zeros([1, max_size[0] * max_size[1], embed_dim[0]],
- dtype=torch.float32)
- trunc_normal_(pos_embed, mean=0, std=0.02)
- self.pos_embed = nn.Parameter(
- pos_embed.transpose(1, 2).reshape(1, embed_dim[0], max_size[0],
- max_size[1]),
- requires_grad=True,
- )
- self.pos_drop = nn.Dropout(p=drop_rate)
- conv_block_num = sum(
- [1 if mixer_type == 'ConvB' else 0 for mixer_type in mixer])
- Block_unit = [ConvBlock for _ in range(conv_block_num)
- ] + [Block for _ in range(len(mixer) - conv_block_num)]
- HW = self.HW
- dpr = np.linspace(0, drop_path_rate, sum(depth))
- self.conv_blocks1 = nn.ModuleList([
- Block_unit[0:depth[0]][i](
- dim=embed_dim[0],
- num_heads=num_heads[0],
- mixer=mixer[0:depth[0]][i],
- HW=self.HW,
- local_mixer=local_mixer[0],
- mlp_ratio=mlp_ratio,
- qkv_bias=qkv_bias,
- qk_scale=qk_scale,
- drop=drop_rate,
- act_layer=eval(act),
- attn_drop=attn_drop_rate,
- drop_path=dpr[0:depth[0]][i],
- norm_layer=norm_layer,
- eps=eps,
- ) for i in range(depth[0])
- ])
- if patch_merging is not None:
- if use_first_sub:
- stride = [2, 1]
- HW = [self.HW[0] // 2, self.HW[1]]
- else:
- stride = [1, 1]
- HW = self.HW
- sub_sample1 = nn.Sequential(
- nn.Conv2d(embed_dim[0],
- embed_dim[1],
- 3,
- stride=stride,
- padding=1),
- nn.BatchNorm2d(embed_dim[1]),
- )
- self.conv_blocks1.append(sub_sample1)
- self.patch_merging = patch_merging
- self.trans_blocks = nn.ModuleList()
- for i in range(depth[1]):
- block = Block_unit[depth[0]:depth[0] + depth[1]][i](
- dim=embed_dim[1],
- num_heads=num_heads[1],
- mixer=mixer[depth[0]:depth[0] + depth[1]][i],
- HW=HW,
- local_mixer=local_mixer[1],
- mlp_ratio=mlp_ratio,
- qkv_bias=qkv_bias,
- qk_scale=qk_scale,
- drop=drop_rate,
- act_layer=eval(act),
- attn_drop=attn_drop_rate,
- drop_path=dpr[depth[0]:depth[0] + depth[1]][i],
- norm_layer=norm_layer,
- eps=eps,
- )
- if i + depth[0] < conv_block_num:
- self.conv_blocks1.append(block)
- else:
- self.trans_blocks.append(block)
- if patch_merging is not None:
- self.trans_blocks.append(DownSConv(embed_dim[1], embed_dim[2]))
- HW = [HW[0] // 2, -1]
- for i in range(depth[2]):
- self.trans_blocks.append(Block_unit[depth[0] + depth[1]:][i](
- dim=embed_dim[2],
- num_heads=num_heads[2],
- mixer=mixer[depth[0] + depth[1]:][i],
- HW=HW,
- local_mixer=local_mixer[2],
- mlp_ratio=mlp_ratio,
- qkv_bias=qkv_bias,
- qk_scale=qk_scale,
- drop=drop_rate,
- act_layer=eval(act),
- attn_drop=attn_drop_rate,
- drop_path=dpr[depth[0] + depth[1]:][i],
- norm_layer=norm_layer,
- eps=eps,
- ))
- self.last_stage = last_stage
- self.out_channels = embed_dim[-1]
- self.apply(self._init_weights)
- def _init_weights(self, m):
- if isinstance(m, nn.Linear):
- trunc_normal_(m.weight, mean=0, std=0.02)
- if isinstance(m, nn.Linear) and m.bias is not None:
- zeros_(m.bias)
- if isinstance(m, nn.LayerNorm):
- zeros_(m.bias)
- ones_(m.weight)
- if isinstance(m, nn.Conv2d):
- kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
- @torch.jit.ignore
- def no_weight_decay(self):
- return {'pos_embed', 'sub_sample1', 'sub_sample2'}
- def forward(self, x):
- x = self.patch_embed(x)
- w = x.shape[-1]
- x = x + self.pos_embed[:, :, :x.shape[-2], :w]
- for blk in self.conv_blocks1:
- x = blk(x)
- x = x.flatten(2).transpose(1, 2)
- for blk in self.trans_blocks:
- x, w = blk(x, w)
- B, N, C = x.shape
- if not self.flatten:
- x = x.transpose(1, 2).reshape(B, C, -1, w)
- return x
|