svtrnet2dpos.py 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616
  1. import numpy as np
  2. import torch
  3. from torch import nn
  4. from torch.nn.init import kaiming_normal_, ones_, trunc_normal_, zeros_
  5. from openrec.modeling.common import DropPath, Identity, Mlp
  6. class ConvBNLayer(nn.Module):
  7. def __init__(
  8. self,
  9. in_channels,
  10. out_channels,
  11. kernel_size=3,
  12. stride=1,
  13. padding=0,
  14. bias=False,
  15. groups=1,
  16. act=nn.GELU,
  17. ):
  18. super().__init__()
  19. self.conv = nn.Conv2d(
  20. in_channels=in_channels,
  21. out_channels=out_channels,
  22. kernel_size=kernel_size,
  23. stride=stride,
  24. padding=padding,
  25. groups=groups,
  26. bias=bias,
  27. )
  28. self.norm = nn.BatchNorm2d(out_channels)
  29. self.act = act()
  30. def forward(self, inputs):
  31. out = self.conv(inputs)
  32. out = self.norm(out)
  33. out = self.act(out)
  34. return out
  35. class ConvMixer(nn.Module):
  36. def __init__(
  37. self,
  38. dim,
  39. num_heads=8,
  40. HW=[8, 25],
  41. local_k=[3, 3],
  42. ):
  43. super().__init__()
  44. self.HW = HW
  45. self.dim = dim
  46. self.local_mixer = nn.Conv2d(dim,
  47. dim,
  48. local_k,
  49. 1, [local_k[0] // 2, local_k[1] // 2],
  50. groups=num_heads)
  51. def forward(self, x, w):
  52. x = x.transpose(1, 2).reshape([x.shape[0], self.dim, -1, w])
  53. x = self.local_mixer(x)
  54. x = x.flatten(2).transpose(1, 2)
  55. return x
  56. class ConvMlp(nn.Module):
  57. def __init__(
  58. self,
  59. in_features,
  60. hidden_features=None,
  61. out_features=None,
  62. act_layer=nn.GELU,
  63. drop=0.0,
  64. groups=1,
  65. ):
  66. super().__init__()
  67. out_features = out_features or in_features
  68. hidden_features = hidden_features or in_features
  69. self.fc1 = nn.Conv2d(in_features, hidden_features, 1, groups=groups)
  70. self.act = act_layer()
  71. self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
  72. self.drop = nn.Dropout(drop)
  73. def forward(self, x):
  74. x = self.fc1(x)
  75. x = self.act(x)
  76. x = self.drop(x)
  77. x = self.fc2(x)
  78. x = self.drop(x)
  79. return x
  80. class ConvBlock(nn.Module):
  81. def __init__(
  82. self,
  83. dim,
  84. num_heads,
  85. mixer='Global',
  86. local_mixer=[7, 11],
  87. HW=None,
  88. mlp_ratio=4.0,
  89. qkv_bias=False,
  90. qk_scale=None,
  91. drop=0.0,
  92. attn_drop=0.0,
  93. drop_path=0.0,
  94. act_layer=nn.GELU,
  95. norm_layer='nn.LayerNorm',
  96. eps=1e-6,
  97. prenorm=True,
  98. ):
  99. super().__init__()
  100. self.norm1 = nn.BatchNorm2d(dim)
  101. self.local_mixer = nn.Conv2d(dim,
  102. dim, [5, 5],
  103. 1, [2, 2],
  104. groups=num_heads)
  105. self.drop_path = DropPath(drop_path) if drop_path > 0.0 else Identity()
  106. self.norm2 = nn.BatchNorm2d(dim)
  107. mlp_hidden_dim = int(dim * mlp_ratio)
  108. self.mlp = ConvMlp(in_features=dim,
  109. hidden_features=mlp_hidden_dim,
  110. act_layer=act_layer,
  111. drop=drop)
  112. self.prenorm = prenorm
  113. def forward(self, x):
  114. x = self.norm1(x + self.drop_path(self.local_mixer(x)))
  115. x = self.norm2(x + self.drop_path(self.mlp(x)))
  116. return x
  117. class Attention(nn.Module):
  118. def __init__(
  119. self,
  120. dim,
  121. num_heads=8,
  122. mixer='Global',
  123. HW=None,
  124. local_k=[7, 11],
  125. qkv_bias=False,
  126. qk_scale=None,
  127. attn_drop=0.0,
  128. proj_drop=0.0,
  129. ):
  130. super().__init__()
  131. self.num_heads = num_heads
  132. self.dim = dim
  133. self.head_dim = dim // num_heads
  134. self.scale = qk_scale or self.head_dim**-0.5
  135. self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
  136. self.attn_drop = nn.Dropout(attn_drop)
  137. self.proj = nn.Linear(dim, dim)
  138. self.proj_drop = nn.Dropout(proj_drop)
  139. self.HW = HW
  140. if HW is not None:
  141. H = HW[0]
  142. W = HW[1]
  143. if W == -1:
  144. W = 300
  145. self.C = dim
  146. self.H = H
  147. self.W = W
  148. if mixer == 'Local' and HW is not None:
  149. if HW[1] == -1:
  150. wk = 29
  151. else:
  152. wk = local_k[1]
  153. self.wk = wk
  154. mask = torch.ones(W, W, dtype=torch.float32, requires_grad=False)
  155. for w in range(0, W):
  156. b_w = w - wk // 2 if w - wk // 2 > 0 else 0
  157. if b_w > W - wk:
  158. b_w = W - wk
  159. mask[w, b_w:b_w + wk] = 0.0
  160. mask[mask >= 1] = -np.inf
  161. self.register_buffer('mask', mask)
  162. self.mixer = mixer
  163. def forward(self, x, w):
  164. B, N, _ = x.shape
  165. h = N // w
  166. qkv = self.qkv(x).reshape(B, N, 3, self.num_heads,
  167. self.head_dim).permute(2, 0, 3, 1, 4)
  168. q, k, v = qkv.unbind(0)
  169. q = q * self.scale
  170. attn = q @ k.transpose(-2, -1)
  171. if self.mixer == 'Local' and w >= 32:
  172. mask1 = self.mask[(self.W - w) // 2:-(self.W - w) // 2,
  173. (self.W - w) // 2:-(self.W - w) // 2]
  174. mask1[:(self.wk // 2 + 1)] = self.mask[:(self.wk // 2 + 1), :w]
  175. mask1[-(self.wk // 2 + 1):] = self.mask[-(self.wk // 2 + 1):, -w:]
  176. attn += mask1[None, None, :, :].tile(B, 1, h, h)
  177. attn = attn.softmax(dim=-1)
  178. attn = self.attn_drop(attn)
  179. x = attn @ v
  180. x = x.transpose(1, 2).reshape(B, N, self.dim)
  181. x = self.proj(x)
  182. x = self.proj_drop(x)
  183. return x
  184. class Block(nn.Module):
  185. def __init__(
  186. self,
  187. dim,
  188. num_heads,
  189. mixer='Global',
  190. local_mixer=[7, 11],
  191. HW=None,
  192. mlp_ratio=4.0,
  193. qkv_bias=False,
  194. qk_scale=None,
  195. drop=0.0,
  196. attn_drop=0.0,
  197. drop_path=0.0,
  198. act_layer=nn.GELU,
  199. norm_layer='nn.LayerNorm',
  200. eps=1e-6,
  201. ):
  202. super().__init__()
  203. if isinstance(norm_layer, str):
  204. self.norm1 = eval(norm_layer)(dim, eps=eps)
  205. else:
  206. self.norm1 = norm_layer(dim)
  207. if mixer == 'Global' or mixer == 'Local':
  208. self.mixer = Attention(
  209. dim,
  210. num_heads=num_heads,
  211. mixer=mixer,
  212. HW=HW,
  213. local_k=local_mixer,
  214. qkv_bias=qkv_bias,
  215. qk_scale=qk_scale,
  216. attn_drop=attn_drop,
  217. proj_drop=drop,
  218. )
  219. elif mixer == 'Conv':
  220. self.mixer = ConvMixer(dim,
  221. num_heads=num_heads,
  222. HW=HW,
  223. local_k=local_mixer)
  224. else:
  225. raise TypeError('The mixer must be one of [Global, Local, Conv]')
  226. self.drop_path = DropPath(drop_path) if drop_path > 0.0 else Identity()
  227. if isinstance(norm_layer, str):
  228. self.norm2 = eval(norm_layer)(dim, eps=eps)
  229. else:
  230. self.norm2 = norm_layer(dim)
  231. mlp_hidden_dim = int(dim * mlp_ratio)
  232. self.mlp_ratio = mlp_ratio
  233. self.mlp = Mlp(
  234. in_features=dim,
  235. hidden_features=mlp_hidden_dim,
  236. act_layer=act_layer,
  237. drop=drop,
  238. )
  239. def forward(self, x, w):
  240. x = self.norm1(x + self.drop_path(self.mixer(x, w)))
  241. x = self.norm2(x + self.drop_path(self.mlp(x)))
  242. return x, w
  243. class PatchEmbed(nn.Module):
  244. """Image to Patch Embedding."""
  245. def __init__(
  246. self,
  247. img_size=[32, 100],
  248. in_channels=3,
  249. embed_dim=768,
  250. sub_num=2,
  251. patch_size=[4, 4],
  252. mode='pope',
  253. ):
  254. super().__init__()
  255. num_patches = (img_size[1] // (2**sub_num)) * (img_size[0] //
  256. (2**sub_num))
  257. self.img_size = img_size
  258. self.num_patches = num_patches
  259. self.embed_dim = embed_dim
  260. self.norm = None
  261. if mode == 'pope':
  262. if sub_num == 2:
  263. self.proj = nn.Sequential(
  264. ConvBNLayer(
  265. in_channels=in_channels,
  266. out_channels=embed_dim // 2,
  267. kernel_size=3,
  268. stride=2,
  269. padding=1,
  270. act=nn.GELU,
  271. bias=None,
  272. ),
  273. ConvBNLayer(
  274. in_channels=embed_dim // 2,
  275. out_channels=embed_dim,
  276. kernel_size=3,
  277. stride=2,
  278. padding=1,
  279. act=nn.GELU,
  280. bias=None,
  281. ),
  282. )
  283. if sub_num == 3:
  284. self.proj = nn.Sequential(
  285. ConvBNLayer(
  286. in_channels=in_channels,
  287. out_channels=embed_dim // 4,
  288. kernel_size=3,
  289. stride=2,
  290. padding=1,
  291. act=nn.GELU,
  292. bias=None,
  293. ),
  294. ConvBNLayer(
  295. in_channels=embed_dim // 4,
  296. out_channels=embed_dim // 2,
  297. kernel_size=3,
  298. stride=2,
  299. padding=1,
  300. act=nn.GELU,
  301. bias=None,
  302. ),
  303. ConvBNLayer(
  304. in_channels=embed_dim // 2,
  305. out_channels=embed_dim,
  306. kernel_size=3,
  307. stride=2,
  308. padding=1,
  309. act=nn.GELU,
  310. bias=None,
  311. ),
  312. )
  313. elif mode == 'linear':
  314. self.proj = nn.Conv2d(1,
  315. embed_dim,
  316. kernel_size=patch_size,
  317. stride=patch_size)
  318. self.num_patches = img_size[0] // patch_size[0] * img_size[
  319. 1] // patch_size[1]
  320. def forward(self, x):
  321. x = self.proj(x)
  322. return x
  323. class SubSample(nn.Module):
  324. def __init__(
  325. self,
  326. in_channels,
  327. out_channels,
  328. types='Pool',
  329. stride=[2, 1],
  330. sub_norm='nn.LayerNorm',
  331. act=None,
  332. ):
  333. super().__init__()
  334. self.types = types
  335. if types == 'Pool':
  336. self.avgpool = nn.AvgPool2d(kernel_size=[3, 5],
  337. stride=stride,
  338. padding=[1, 2])
  339. self.maxpool = nn.MaxPool2d(kernel_size=[3, 5],
  340. stride=stride,
  341. padding=[1, 2])
  342. self.proj = nn.Linear(in_channels, out_channels)
  343. else:
  344. self.conv = nn.Conv2d(in_channels,
  345. out_channels,
  346. kernel_size=3,
  347. stride=stride,
  348. padding=1)
  349. self.dim = in_channels
  350. self.norm = eval(sub_norm)(out_channels)
  351. if act is not None:
  352. self.act = act()
  353. else:
  354. self.act = None
  355. def forward(self, x, w):
  356. if self.types == 'Pool':
  357. x1 = self.avgpool(x)
  358. x2 = self.maxpool(x)
  359. x = (x1 + x2) * 0.5
  360. out = self.proj(x.flatten(2).transpose(1, 2))
  361. else:
  362. x = x.transpose(1, 2).reshape([x.shape[0], self.dim, -1, w])
  363. x = self.conv(x)
  364. out = x.flatten(2).transpose(1, 2)
  365. out = self.norm(out)
  366. if self.act is not None:
  367. out = self.act(out)
  368. return out, w
  369. class FlattenTranspose(nn.Module):
  370. def forward(self, x):
  371. return x.flatten(2).transpose(1, 2)
  372. class DownSConv(nn.Module):
  373. def __init__(self, in_channels, out_channels):
  374. super().__init__()
  375. self.conv = nn.Conv2d(in_channels,
  376. out_channels,
  377. 3,
  378. stride=[2, 1],
  379. padding=1)
  380. self.norm = nn.LayerNorm(out_channels)
  381. def forward(self, x, w):
  382. B, N, C = x.shape
  383. x = x.transpose(1, 2).reshape(B, C, -1, w)
  384. x = self.conv(x)
  385. w = x.shape[-1]
  386. x = self.norm(x.flatten(2).transpose(1, 2))
  387. return x, w
  388. class SVTRNet2DPos(nn.Module):
  389. def __init__(
  390. self,
  391. img_size=[32, -1],
  392. in_channels=3,
  393. embed_dim=[64, 128, 256],
  394. depth=[3, 6, 3],
  395. num_heads=[2, 4, 8],
  396. mixer=['Local'] * 6 +
  397. ['Global'] * 6, # Local atten, Global atten, Conv
  398. local_mixer=[[7, 11], [7, 11], [7, 11]],
  399. patch_merging='Conv', # Conv, Pool, None
  400. pool_size=[2, 1],
  401. max_size=[16, 32],
  402. mlp_ratio=4,
  403. qkv_bias=True,
  404. qk_scale=None,
  405. drop_rate=0.0,
  406. last_drop=0.1,
  407. attn_drop_rate=0.0,
  408. drop_path_rate=0.1,
  409. norm_layer='nn.LayerNorm',
  410. eps=1e-6,
  411. act='nn.GELU',
  412. last_stage=True,
  413. sub_num=2,
  414. use_first_sub=True,
  415. flatten=False,
  416. **kwargs,
  417. ):
  418. super().__init__()
  419. self.img_size = img_size
  420. self.embed_dim = embed_dim
  421. self.flatten = flatten
  422. patch_merging = None if patch_merging != 'Conv' and patch_merging != 'Pool' else patch_merging
  423. self.patch_embed = PatchEmbed(
  424. img_size=img_size,
  425. in_channels=in_channels,
  426. embed_dim=embed_dim[0],
  427. sub_num=sub_num,
  428. )
  429. if img_size[1] == -1:
  430. self.HW = [img_size[0] // (2**sub_num), -1]
  431. else:
  432. self.HW = [
  433. img_size[0] // (2**sub_num), img_size[1] // (2**sub_num)
  434. ]
  435. pos_embed = torch.zeros([1, max_size[0] * max_size[1], embed_dim[0]],
  436. dtype=torch.float32)
  437. trunc_normal_(pos_embed, mean=0, std=0.02)
  438. self.pos_embed = nn.Parameter(
  439. pos_embed.transpose(1, 2).reshape(1, embed_dim[0], max_size[0],
  440. max_size[1]),
  441. requires_grad=True,
  442. )
  443. self.pos_drop = nn.Dropout(p=drop_rate)
  444. conv_block_num = sum(
  445. [1 if mixer_type == 'ConvB' else 0 for mixer_type in mixer])
  446. Block_unit = [ConvBlock for _ in range(conv_block_num)
  447. ] + [Block for _ in range(len(mixer) - conv_block_num)]
  448. HW = self.HW
  449. dpr = np.linspace(0, drop_path_rate, sum(depth))
  450. self.conv_blocks1 = nn.ModuleList([
  451. Block_unit[0:depth[0]][i](
  452. dim=embed_dim[0],
  453. num_heads=num_heads[0],
  454. mixer=mixer[0:depth[0]][i],
  455. HW=self.HW,
  456. local_mixer=local_mixer[0],
  457. mlp_ratio=mlp_ratio,
  458. qkv_bias=qkv_bias,
  459. qk_scale=qk_scale,
  460. drop=drop_rate,
  461. act_layer=eval(act),
  462. attn_drop=attn_drop_rate,
  463. drop_path=dpr[0:depth[0]][i],
  464. norm_layer=norm_layer,
  465. eps=eps,
  466. ) for i in range(depth[0])
  467. ])
  468. if patch_merging is not None:
  469. if use_first_sub:
  470. stride = [2, 1]
  471. HW = [self.HW[0] // 2, self.HW[1]]
  472. else:
  473. stride = [1, 1]
  474. HW = self.HW
  475. sub_sample1 = nn.Sequential(
  476. nn.Conv2d(embed_dim[0],
  477. embed_dim[1],
  478. 3,
  479. stride=stride,
  480. padding=1),
  481. nn.BatchNorm2d(embed_dim[1]),
  482. )
  483. self.conv_blocks1.append(sub_sample1)
  484. self.patch_merging = patch_merging
  485. self.trans_blocks = nn.ModuleList()
  486. for i in range(depth[1]):
  487. block = Block_unit[depth[0]:depth[0] + depth[1]][i](
  488. dim=embed_dim[1],
  489. num_heads=num_heads[1],
  490. mixer=mixer[depth[0]:depth[0] + depth[1]][i],
  491. HW=HW,
  492. local_mixer=local_mixer[1],
  493. mlp_ratio=mlp_ratio,
  494. qkv_bias=qkv_bias,
  495. qk_scale=qk_scale,
  496. drop=drop_rate,
  497. act_layer=eval(act),
  498. attn_drop=attn_drop_rate,
  499. drop_path=dpr[depth[0]:depth[0] + depth[1]][i],
  500. norm_layer=norm_layer,
  501. eps=eps,
  502. )
  503. if i + depth[0] < conv_block_num:
  504. self.conv_blocks1.append(block)
  505. else:
  506. self.trans_blocks.append(block)
  507. if patch_merging is not None:
  508. self.trans_blocks.append(DownSConv(embed_dim[1], embed_dim[2]))
  509. HW = [HW[0] // 2, -1]
  510. for i in range(depth[2]):
  511. self.trans_blocks.append(Block_unit[depth[0] + depth[1]:][i](
  512. dim=embed_dim[2],
  513. num_heads=num_heads[2],
  514. mixer=mixer[depth[0] + depth[1]:][i],
  515. HW=HW,
  516. local_mixer=local_mixer[2],
  517. mlp_ratio=mlp_ratio,
  518. qkv_bias=qkv_bias,
  519. qk_scale=qk_scale,
  520. drop=drop_rate,
  521. act_layer=eval(act),
  522. attn_drop=attn_drop_rate,
  523. drop_path=dpr[depth[0] + depth[1]:][i],
  524. norm_layer=norm_layer,
  525. eps=eps,
  526. ))
  527. self.last_stage = last_stage
  528. self.out_channels = embed_dim[-1]
  529. self.apply(self._init_weights)
  530. def _init_weights(self, m):
  531. if isinstance(m, nn.Linear):
  532. trunc_normal_(m.weight, mean=0, std=0.02)
  533. if isinstance(m, nn.Linear) and m.bias is not None:
  534. zeros_(m.bias)
  535. if isinstance(m, nn.LayerNorm):
  536. zeros_(m.bias)
  537. ones_(m.weight)
  538. if isinstance(m, nn.Conv2d):
  539. kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
  540. @torch.jit.ignore
  541. def no_weight_decay(self):
  542. return {'pos_embed', 'sub_sample1', 'sub_sample2'}
  543. def forward(self, x):
  544. x = self.patch_embed(x)
  545. w = x.shape[-1]
  546. x = x + self.pos_embed[:, :, :x.shape[-2], :w]
  547. for blk in self.conv_blocks1:
  548. x = blk(x)
  549. x = x.flatten(2).transpose(1, 2)
  550. for blk in self.trans_blocks:
  551. x, w = blk(x, w)
  552. B, N, C = x.shape
  553. if not self.flatten:
  554. x = x.transpose(1, 2).reshape(B, C, -1, w)
  555. return x