123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213 |
- import torch.nn as nn
- __all__ = ['ResNet31']
- def conv3x3(in_channel, out_channel, stride=1):
- return nn.Conv2d(in_channel,
- out_channel,
- kernel_size=3,
- stride=stride,
- padding=1,
- bias=False)
- class BasicBlock(nn.Module):
- expansion = 1
- def __init__(self, in_channels, channels, stride=1, downsample=False):
- super().__init__()
- self.conv1 = conv3x3(in_channels, channels, stride)
- self.bn1 = nn.BatchNorm2d(channels)
- self.relu = nn.ReLU()
- self.conv2 = conv3x3(channels, channels)
- self.bn2 = nn.BatchNorm2d(channels)
- self.downsample = downsample
- if downsample:
- self.downsample = nn.Sequential(
- nn.Conv2d(in_channels,
- channels * self.expansion,
- 1,
- stride,
- bias=False),
- nn.BatchNorm2d(channels * self.expansion),
- )
- else:
- self.downsample = nn.Sequential()
- self.stride = stride
- def forward(self, x):
- residual = x
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
- out = self.conv2(out)
- out = self.bn2(out)
- if self.downsample:
- residual = self.downsample(x)
- out += residual
- out = self.relu(out)
- return out
- class ResNet31(nn.Module):
- """
- Args:
- in_channels (int): Number of channels of input image tensor.
- layers (list[int]): List of BasicBlock number for each stage.
- channels (list[int]): List of out_channels of Conv2d layer.
- out_indices (None | Sequence[int]): Indices of output stages.
- last_stage_pool (bool): If True, add `MaxPool2d` layer to last stage.
- """
- def __init__(
- self,
- in_channels=3,
- layers=[1, 2, 5, 3],
- channels=[64, 128, 256, 256, 512, 512, 512],
- out_indices=None,
- last_stage_pool=False,
- ):
- super(ResNet31, self).__init__()
- assert isinstance(in_channels, int)
- assert isinstance(last_stage_pool, bool)
- self.out_indices = out_indices
- self.last_stage_pool = last_stage_pool
- # conv 1 (Conv Conv)
- self.conv1_1 = nn.Conv2d(in_channels,
- channels[0],
- kernel_size=3,
- stride=1,
- padding=1)
- self.bn1_1 = nn.BatchNorm2d(channels[0])
- self.relu1_1 = nn.ReLU(inplace=True)
- self.conv1_2 = nn.Conv2d(channels[0],
- channels[1],
- kernel_size=3,
- stride=1,
- padding=1)
- self.bn1_2 = nn.BatchNorm2d(channels[1])
- self.relu1_2 = nn.ReLU(inplace=True)
- # conv 2 (Max-pooling, Residual block, Conv)
- self.pool2 = nn.MaxPool2d(kernel_size=2,
- stride=2,
- padding=0,
- ceil_mode=True)
- self.block2 = self._make_layer(channels[1], channels[2], layers[0])
- self.conv2 = nn.Conv2d(channels[2],
- channels[2],
- kernel_size=3,
- stride=1,
- padding=1)
- self.bn2 = nn.BatchNorm2d(channels[2])
- self.relu2 = nn.ReLU(inplace=True)
- # conv 3 (Max-pooling, Residual block, Conv)
- self.pool3 = nn.MaxPool2d(kernel_size=2,
- stride=2,
- padding=0,
- ceil_mode=True)
- self.block3 = self._make_layer(channels[2], channels[3], layers[1])
- self.conv3 = nn.Conv2d(channels[3],
- channels[3],
- kernel_size=3,
- stride=1,
- padding=1)
- self.bn3 = nn.BatchNorm2d(channels[3])
- self.relu3 = nn.ReLU(inplace=True)
- # conv 4 (Max-pooling, Residual block, Conv)
- self.pool4 = nn.MaxPool2d(kernel_size=(2, 1),
- stride=(2, 1),
- padding=0,
- ceil_mode=True)
- self.block4 = self._make_layer(channels[3], channels[4], layers[2])
- self.conv4 = nn.Conv2d(channels[4],
- channels[4],
- kernel_size=3,
- stride=1,
- padding=1)
- self.bn4 = nn.BatchNorm2d(channels[4])
- self.relu4 = nn.ReLU(inplace=True)
- # conv 5 ((Max-pooling), Residual block, Conv)
- self.pool5 = None
- if self.last_stage_pool:
- self.pool5 = nn.MaxPool2d(kernel_size=2,
- stride=2,
- padding=0,
- ceil_mode=True)
- self.block5 = self._make_layer(channels[4], channels[5], layers[3])
- self.conv5 = nn.Conv2d(channels[5],
- channels[5],
- kernel_size=3,
- stride=1,
- padding=1)
- self.bn5 = nn.BatchNorm2d(channels[5])
- self.relu5 = nn.ReLU(inplace=True)
- self.out_channels = channels[-1]
- def _make_layer(self, input_channels, output_channels, blocks):
- layers = []
- for _ in range(blocks):
- downsample = None
- if input_channels != output_channels:
- downsample = nn.Sequential(
- nn.Conv2d(
- input_channels,
- output_channels,
- kernel_size=1,
- stride=1,
- bias=False,
- ),
- nn.BatchNorm2d(output_channels),
- )
- layers.append(
- BasicBlock(input_channels,
- output_channels,
- downsample=downsample))
- input_channels = output_channels
- return nn.Sequential(*layers)
- def forward(self, x):
- x = self.conv1_1(x)
- x = self.bn1_1(x)
- x = self.relu1_1(x)
- x = self.conv1_2(x)
- x = self.bn1_2(x)
- x = self.relu1_2(x)
- outs = []
- for i in range(4):
- layer_index = i + 2
- pool_layer = getattr(self, 'pool{}'.format(layer_index))
- block_layer = getattr(self, 'block{}'.format(layer_index))
- conv_layer = getattr(self, 'conv{}'.format(layer_index))
- bn_layer = getattr(self, 'bn{}'.format(layer_index))
- relu_layer = getattr(self, 'relu{}'.format(layer_index))
- if pool_layer is not None:
- x = pool_layer(x)
- x = block_layer(x)
- x = conv_layer(x)
- x = bn_layer(x)
- x = relu_layer(x)
- outs.append(x)
- if self.out_indices is not None:
- return tuple([outs[i] for i in self.out_indices])
- return x
|