12345678910111213141516171819202122232425262728293031323334353637 |
- import torch
- from torch import nn
- class MTB(nn.Module):
- def __init__(self, cnn_num, in_channels):
- super(MTB, self).__init__()
- self.block = nn.Sequential()
- self.out_channels = in_channels
- self.cnn_num = cnn_num
- if self.cnn_num == 2:
- for i in range(self.cnn_num):
- self.block.add_module(
- 'conv_{}'.format(i),
- nn.Conv2d(
- in_channels=in_channels if i == 0 else 32 *
- (2**(i - 1)),
- out_channels=32 * (2**i),
- kernel_size=3,
- stride=2,
- padding=1,
- ),
- )
- self.block.add_module('relu_{}'.format(i), nn.ReLU())
- self.block.add_module('bn_{}'.format(i),
- nn.BatchNorm2d(32 * (2**i)))
- def forward(self, images):
- x = self.block(images)
- if self.cnn_num == 2:
- # (b, w, h, c)
- x = x.permute(0, 3, 2, 1)
- x_shape = x.shape
- x = torch.reshape(
- x, (x_shape[0], x_shape[1], x_shape[2] * x_shape[3]))
- return x
|