123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from openrec.modeling.common import Activation
- class ConvBNLayer(nn.Module):
- def __init__(
- self,
- num_channels,
- filter_size,
- num_filters,
- stride,
- padding,
- num_groups=1,
- act='hard_swish',
- ):
- super(ConvBNLayer, self).__init__()
- self.act = act
- self._conv = nn.Conv2d(
- in_channels=num_channels,
- out_channels=num_filters,
- kernel_size=filter_size,
- stride=stride,
- padding=padding,
- groups=num_groups,
- bias=False,
- )
- self._batch_norm = nn.BatchNorm2d(num_filters, )
- if self.act is not None:
- self._act = Activation(act_type=act, inplace=True)
- def forward(self, inputs):
- y = self._conv(inputs)
- y = self._batch_norm(y)
- if self.act is not None:
- y = self._act(y)
- return y
- class DepthwiseSeparable(nn.Module):
- def __init__(
- self,
- num_channels,
- num_filters1,
- num_filters2,
- num_groups,
- stride,
- scale,
- dw_size=3,
- padding=1,
- use_se=False,
- ):
- super(DepthwiseSeparable, self).__init__()
- self._depthwise_conv = ConvBNLayer(
- num_channels=num_channels,
- num_filters=int(num_filters1 * scale),
- filter_size=dw_size,
- stride=stride,
- padding=padding,
- num_groups=int(num_groups * scale),
- )
- self._se = None
- if use_se:
- self._se = SEModule(int(num_filters1 * scale))
- self._pointwise_conv = ConvBNLayer(
- num_channels=int(num_filters1 * scale),
- filter_size=1,
- num_filters=int(num_filters2 * scale),
- stride=1,
- padding=0,
- )
- def forward(self, inputs):
- y = self._depthwise_conv(inputs)
- if self._se is not None:
- y = self._se(y)
- y = self._pointwise_conv(y)
- return y
- class MobileNetV1Enhance(nn.Module):
- def __init__(self,
- in_channels=3,
- scale=0.5,
- last_conv_stride=1,
- last_pool_type='max',
- **kwargs):
- super().__init__()
- self.scale = scale
- self.block_list = []
- self.conv1 = ConvBNLayer(
- num_channels=in_channels,
- filter_size=3,
- num_filters=int(32 * scale),
- stride=2,
- padding=1,
- )
- conv2_1 = DepthwiseSeparable(
- num_channels=int(32 * scale),
- num_filters1=32,
- num_filters2=64,
- num_groups=32,
- stride=1,
- scale=scale,
- )
- self.block_list.append(conv2_1)
- conv2_2 = DepthwiseSeparable(
- num_channels=int(64 * scale),
- num_filters1=64,
- num_filters2=128,
- num_groups=64,
- stride=1,
- scale=scale,
- )
- self.block_list.append(conv2_2)
- conv3_1 = DepthwiseSeparable(
- num_channels=int(128 * scale),
- num_filters1=128,
- num_filters2=128,
- num_groups=128,
- stride=1,
- scale=scale,
- )
- self.block_list.append(conv3_1)
- conv3_2 = DepthwiseSeparable(
- num_channels=int(128 * scale),
- num_filters1=128,
- num_filters2=256,
- num_groups=128,
- stride=(2, 1),
- scale=scale,
- )
- self.block_list.append(conv3_2)
- conv4_1 = DepthwiseSeparable(
- num_channels=int(256 * scale),
- num_filters1=256,
- num_filters2=256,
- num_groups=256,
- stride=1,
- scale=scale,
- )
- self.block_list.append(conv4_1)
- conv4_2 = DepthwiseSeparable(
- num_channels=int(256 * scale),
- num_filters1=256,
- num_filters2=512,
- num_groups=256,
- stride=(2, 1),
- scale=scale,
- )
- self.block_list.append(conv4_2)
- for _ in range(5):
- conv5 = DepthwiseSeparable(
- num_channels=int(512 * scale),
- num_filters1=512,
- num_filters2=512,
- num_groups=512,
- stride=1,
- dw_size=5,
- padding=2,
- scale=scale,
- use_se=False,
- )
- self.block_list.append(conv5)
- conv5_6 = DepthwiseSeparable(
- num_channels=int(512 * scale),
- num_filters1=512,
- num_filters2=1024,
- num_groups=512,
- stride=(2, 1),
- dw_size=5,
- padding=2,
- scale=scale,
- use_se=True,
- )
- self.block_list.append(conv5_6)
- conv6 = DepthwiseSeparable(
- num_channels=int(1024 * scale),
- num_filters1=1024,
- num_filters2=1024,
- num_groups=1024,
- stride=last_conv_stride,
- dw_size=5,
- padding=2,
- use_se=True,
- scale=scale,
- )
- self.block_list.append(conv6)
- self.block_list = nn.Sequential(*self.block_list)
- if last_pool_type == 'avg':
- self.pool = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
- else:
- self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
- self.out_channels = int(1024 * scale)
- def forward(self, inputs):
- y = self.conv1(inputs)
- y = self.block_list(y)
- y = self.pool(y)
- return y
- def hardsigmoid(x):
- return F.relu6(x + 3.0, inplace=True) / 6.0
- class SEModule(nn.Module):
- def __init__(self, channel, reduction=4):
- super(SEModule, self).__init__()
- self.avg_pool = nn.AdaptiveAvgPool2d(1)
- self.conv1 = nn.Conv2d(
- in_channels=channel,
- out_channels=channel // reduction,
- kernel_size=1,
- stride=1,
- padding=0,
- bias=True,
- )
- self.conv2 = nn.Conv2d(
- in_channels=channel // reduction,
- out_channels=channel,
- kernel_size=1,
- stride=1,
- padding=0,
- bias=True,
- )
- def forward(self, inputs):
- outputs = self.avg_pool(inputs)
- outputs = self.conv1(outputs)
- outputs = F.relu(outputs)
- outputs = self.conv2(outputs)
- outputs = hardsigmoid(outputs)
- x = torch.mul(inputs, outputs)
- return x
|