123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from openrec.modeling.common import Activation
- NET_CONFIG_det = {
- 'blocks2':
- # k, in_c, out_c, s, use_se
- [[3, 16, 32, 1, False]],
- 'blocks3': [[3, 32, 64, 2, False], [3, 64, 64, 1, False]],
- 'blocks4': [[3, 64, 128, 2, False], [3, 128, 128, 1, False]],
- 'blocks5': [
- [3, 128, 256, 2, False],
- [5, 256, 256, 1, False],
- [5, 256, 256, 1, False],
- [5, 256, 256, 1, False],
- [5, 256, 256, 1, False],
- ],
- 'blocks6': [
- [5, 256, 512, 2, True],
- [5, 512, 512, 1, True],
- [5, 512, 512, 1, False],
- [5, 512, 512, 1, False],
- ],
- }
- NET_CONFIG_rec = {
- 'blocks2':
- # k, in_c, out_c, s, use_se
- [[3, 16, 32, 1, False]],
- 'blocks3': [[3, 32, 64, 1, False], [3, 64, 64, 1, False]],
- 'blocks4': [[3, 64, 128, (2, 1), False], [3, 128, 128, 1, False]],
- 'blocks5': [
- [3, 128, 256, (1, 2), False],
- [5, 256, 256, 1, False],
- [5, 256, 256, 1, False],
- [5, 256, 256, 1, False],
- [5, 256, 256, 1, False],
- ],
- 'blocks6': [
- [5, 256, 512, (2, 1), True],
- [5, 512, 512, 1, True],
- [5, 512, 512, (2, 1), False],
- [5, 512, 512, 1, False],
- ],
- }
- def make_divisible(v, divisor=16, min_value=None):
- if min_value is None:
- min_value = divisor
- new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
- if new_v < 0.9 * v:
- new_v += divisor
- return new_v
- class LearnableAffineBlock(nn.Module):
- def __init__(self,
- scale_value=1.0,
- bias_value=0.0,
- lr_mult=1.0,
- lab_lr=0.1):
- super().__init__()
- self.scale = nn.Parameter(torch.Tensor([scale_value]))
- self.bias = nn.Parameter(torch.Tensor([bias_value]))
- def forward(self, x):
- return self.scale * x + self.bias
- class ConvBNLayer(nn.Module):
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size,
- stride,
- groups=1,
- lr_mult=1.0):
- super().__init__()
- self.conv = nn.Conv2d(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=kernel_size,
- stride=stride,
- padding=(kernel_size - 1) // 2,
- groups=groups,
- bias=False,
- )
- self.bn = nn.BatchNorm2d(out_channels)
- def forward(self, x):
- x = self.conv(x)
- x = self.bn(x)
- return x
- class Act(nn.Module):
- def __init__(self, act='hard_swish', lr_mult=1.0, lab_lr=0.1):
- super().__init__()
- assert act in ['hard_swish', 'relu']
- self.act = Activation(act)
- self.lab = LearnableAffineBlock(lr_mult=lr_mult, lab_lr=lab_lr)
- def forward(self, x):
- return self.lab(self.act(x))
- class LearnableRepLayer(nn.Module):
- def __init__(
- self,
- in_channels,
- out_channels,
- kernel_size,
- stride=1,
- groups=1,
- num_conv_branches=1,
- lr_mult=1.0,
- lab_lr=0.1,
- ):
- super().__init__()
- self.is_repped = False
- self.groups = groups
- self.stride = stride
- self.kernel_size = kernel_size
- self.in_channels = in_channels
- self.out_channels = out_channels
- self.num_conv_branches = num_conv_branches
- self.padding = (kernel_size - 1) // 2
- self.identity = (nn.BatchNorm2d(in_channels) if
- out_channels == in_channels and stride == 1 else None)
- self.conv_kxk = nn.ModuleList([
- ConvBNLayer(
- in_channels,
- out_channels,
- kernel_size,
- stride,
- groups=groups,
- lr_mult=lr_mult,
- ) for _ in range(self.num_conv_branches)
- ])
- self.conv_1x1 = (ConvBNLayer(in_channels,
- out_channels,
- 1,
- stride,
- groups=groups,
- lr_mult=lr_mult)
- if kernel_size > 1 else None)
- self.lab = LearnableAffineBlock(lr_mult=lr_mult, lab_lr=lab_lr)
- self.act = Act(lr_mult=lr_mult, lab_lr=lab_lr)
- def forward(self, x):
- # for export
- if self.is_repped:
- out = self.lab(self.reparam_conv(x))
- if self.stride != 2:
- out = self.act(out)
- return out
- out = 0
- if self.identity is not None:
- out += self.identity(x)
- if self.conv_1x1 is not None:
- out += self.conv_1x1(x)
- for conv in self.conv_kxk:
- out += conv(x)
- out = self.lab(out)
- if self.stride != 2:
- out = self.act(out)
- return out
- def rep(self):
- if self.is_repped:
- return
- kernel, bias = self._get_kernel_bias()
- self.reparam_conv = nn.Conv2d(
- in_channels=self.in_channels,
- out_channels=self.out_channels,
- kernel_size=self.kernel_size,
- stride=self.stride,
- padding=self.padding,
- groups=self.groups,
- )
- self.reparam_conv.weight.data = kernel
- self.reparam_conv.bias.data = bias
- self.is_repped = True
- def _pad_kernel_1x1_to_kxk(self, kernel1x1, pad):
- if not isinstance(kernel1x1, torch.Tensor):
- return 0
- else:
- return nn.functional.pad(kernel1x1, [pad, pad, pad, pad])
- def _get_kernel_bias(self):
- kernel_conv_1x1, bias_conv_1x1 = self._fuse_bn_tensor(self.conv_1x1)
- kernel_conv_1x1 = self._pad_kernel_1x1_to_kxk(kernel_conv_1x1,
- self.kernel_size // 2)
- kernel_identity, bias_identity = self._fuse_bn_tensor(self.identity)
- kernel_conv_kxk = 0
- bias_conv_kxk = 0
- for conv in self.conv_kxk:
- kernel, bias = self._fuse_bn_tensor(conv)
- kernel_conv_kxk += kernel
- bias_conv_kxk += bias
- kernel_reparam = kernel_conv_kxk + kernel_conv_1x1 + kernel_identity
- bias_reparam = bias_conv_kxk + bias_conv_1x1 + bias_identity
- return kernel_reparam, bias_reparam
- def _fuse_bn_tensor(self, branch):
- if not branch:
- return 0, 0
- elif isinstance(branch, ConvBNLayer):
- kernel = branch.conv.weight
- running_mean = branch.bn.running_mean
- running_var = branch.bn.running_var
- gamma = branch.bn.weight
- beta = branch.bn.bias
- eps = branch.bn.eps
- else:
- assert isinstance(branch, nn.BatchNorm2d)
- if not hasattr(self, 'id_tensor'):
- input_dim = self.in_channels // self.groups
- kernel_value = torch.zeros(
- (self.in_channels, input_dim, self.kernel_size,
- self.kernel_size),
- dtype=branch.weight.dtype,
- )
- for i in range(self.in_channels):
- kernel_value[i, i % input_dim, self.kernel_size // 2,
- self.kernel_size // 2] = 1
- self.id_tensor = kernel_value
- kernel = self.id_tensor
- running_mean = branch.running_mean
- running_var = branch.running_var
- gamma = branch.weight
- beta = branch.bias
- eps = branch.eps
- std = (running_var + eps).sqrt()
- t = (gamma / std).reshape((-1, 1, 1, 1))
- return kernel * t, beta - running_mean * gamma / std
- class SELayer(nn.Module):
- def __init__(self, channel, reduction=4, lr_mult=1.0):
- super().__init__()
- self.avg_pool = nn.AdaptiveAvgPool2d(1)
- self.conv1 = nn.Conv2d(
- in_channels=channel,
- out_channels=channel // reduction,
- kernel_size=1,
- stride=1,
- padding=0,
- )
- self.relu = nn.ReLU()
- self.conv2 = nn.Conv2d(
- in_channels=channel // reduction,
- out_channels=channel,
- kernel_size=1,
- stride=1,
- padding=0,
- )
- self.hardsigmoid = Activation('hard_sigmoid')
- def forward(self, x):
- identity = x
- x = self.avg_pool(x)
- x = self.conv1(x)
- x = self.relu(x)
- x = self.conv2(x)
- x = self.hardsigmoid(x)
- x = x * identity
- return x
- class LCNetV3Block(nn.Module):
- def __init__(
- self,
- in_channels,
- out_channels,
- stride,
- dw_size,
- use_se=False,
- conv_kxk_num=4,
- lr_mult=1.0,
- lab_lr=0.1,
- ):
- super().__init__()
- self.use_se = use_se
- self.dw_conv = LearnableRepLayer(
- in_channels=in_channels,
- out_channels=in_channels,
- kernel_size=dw_size,
- stride=stride,
- groups=in_channels,
- num_conv_branches=conv_kxk_num,
- lr_mult=lr_mult,
- lab_lr=lab_lr,
- )
- if use_se:
- self.se = SELayer(in_channels, lr_mult=lr_mult)
- self.pw_conv = LearnableRepLayer(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=1,
- stride=1,
- num_conv_branches=conv_kxk_num,
- lr_mult=lr_mult,
- lab_lr=lab_lr,
- )
- def forward(self, x):
- x = self.dw_conv(x)
- if self.use_se:
- x = self.se(x)
- x = self.pw_conv(x)
- return x
- class PPLCNetV3(nn.Module):
- def __init__(self,
- scale=1.0,
- conv_kxk_num=4,
- lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
- lab_lr=0.1,
- det=False,
- **kwargs):
- super().__init__()
- self.scale = scale
- self.lr_mult_list = lr_mult_list
- self.det = det
- self.net_config = NET_CONFIG_det if self.det else NET_CONFIG_rec
- assert isinstance(
- self.lr_mult_list,
- (list, tuple
- )), 'lr_mult_list should be in (list, tuple) but got {}'.format(
- type(self.lr_mult_list))
- assert len(self.lr_mult_list
- ) == 6, 'lr_mult_list length should be 6 but got {}'.format(
- len(self.lr_mult_list))
- self.conv1 = ConvBNLayer(
- in_channels=3,
- out_channels=make_divisible(16 * scale),
- kernel_size=3,
- stride=2,
- lr_mult=self.lr_mult_list[0],
- )
- self.blocks2 = nn.Sequential(*[
- LCNetV3Block(
- in_channels=make_divisible(in_c * scale),
- out_channels=make_divisible(out_c * scale),
- dw_size=k,
- stride=s,
- use_se=se,
- conv_kxk_num=conv_kxk_num,
- lr_mult=self.lr_mult_list[1],
- lab_lr=lab_lr,
- ) for i, (k, in_c, out_c, s,
- se) in enumerate(self.net_config['blocks2'])
- ])
- self.blocks3 = nn.Sequential(*[
- LCNetV3Block(
- in_channels=make_divisible(in_c * scale),
- out_channels=make_divisible(out_c * scale),
- dw_size=k,
- stride=s,
- use_se=se,
- conv_kxk_num=conv_kxk_num,
- lr_mult=self.lr_mult_list[2],
- lab_lr=lab_lr,
- ) for i, (k, in_c, out_c, s,
- se) in enumerate(self.net_config['blocks3'])
- ])
- self.blocks4 = nn.Sequential(*[
- LCNetV3Block(
- in_channels=make_divisible(in_c * scale),
- out_channels=make_divisible(out_c * scale),
- dw_size=k,
- stride=s,
- use_se=se,
- conv_kxk_num=conv_kxk_num,
- lr_mult=self.lr_mult_list[3],
- lab_lr=lab_lr,
- ) for i, (k, in_c, out_c, s,
- se) in enumerate(self.net_config['blocks4'])
- ])
- self.blocks5 = nn.Sequential(*[
- LCNetV3Block(
- in_channels=make_divisible(in_c * scale),
- out_channels=make_divisible(out_c * scale),
- dw_size=k,
- stride=s,
- use_se=se,
- conv_kxk_num=conv_kxk_num,
- lr_mult=self.lr_mult_list[4],
- lab_lr=lab_lr,
- ) for i, (k, in_c, out_c, s,
- se) in enumerate(self.net_config['blocks5'])
- ])
- self.blocks6 = nn.Sequential(*[
- LCNetV3Block(
- in_channels=make_divisible(in_c * scale),
- out_channels=make_divisible(out_c * scale),
- dw_size=k,
- stride=s,
- use_se=se,
- conv_kxk_num=conv_kxk_num,
- lr_mult=self.lr_mult_list[5],
- lab_lr=lab_lr,
- ) for i, (k, in_c, out_c, s,
- se) in enumerate(self.net_config['blocks6'])
- ])
- self.out_channels = make_divisible(512 * scale)
- if self.det:
- mv_c = [16, 24, 56, 480]
- self.out_channels = [
- make_divisible(self.net_config['blocks3'][-1][2] * scale),
- make_divisible(self.net_config['blocks4'][-1][2] * scale),
- make_divisible(self.net_config['blocks5'][-1][2] * scale),
- make_divisible(self.net_config['blocks6'][-1][2] * scale),
- ]
- self.layer_list = nn.ModuleList([
- nn.Conv2d(self.out_channels[0], int(mv_c[0] * scale), 1, 1, 0),
- nn.Conv2d(self.out_channels[1], int(mv_c[1] * scale), 1, 1, 0),
- nn.Conv2d(self.out_channels[2], int(mv_c[2] * scale), 1, 1, 0),
- nn.Conv2d(self.out_channels[3], int(mv_c[3] * scale), 1, 1, 0),
- ])
- self.out_channels = [
- int(mv_c[0] * scale),
- int(mv_c[1] * scale),
- int(mv_c[2] * scale),
- int(mv_c[3] * scale),
- ]
- def forward(self, x):
- out_list = []
- x = self.conv1(x)
- x = self.blocks2(x)
- x = self.blocks3(x)
- out_list.append(x)
- x = self.blocks4(x)
- out_list.append(x)
- x = self.blocks5(x)
- out_list.append(x)
- x = self.blocks6(x)
- out_list.append(x)
- if self.det:
- out_list[0] = self.layer_list[0](out_list[0])
- out_list[1] = self.layer_list[1](out_list[1])
- out_list[2] = self.layer_list[2](out_list[2])
- out_list[3] = self.layer_list[3](out_list[3])
- return out_list
- if self.training:
- x = F.adaptive_avg_pool2d(x, [1, 40])
- else:
- x = F.avg_pool2d(x, [3, 2])
- return x
|