rec_lcnetv3.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488
  1. import torch
  2. import torch.nn as nn
  3. import torch.nn.functional as F
  4. from openrec.modeling.common import Activation
  5. NET_CONFIG_det = {
  6. 'blocks2':
  7. # k, in_c, out_c, s, use_se
  8. [[3, 16, 32, 1, False]],
  9. 'blocks3': [[3, 32, 64, 2, False], [3, 64, 64, 1, False]],
  10. 'blocks4': [[3, 64, 128, 2, False], [3, 128, 128, 1, False]],
  11. 'blocks5': [
  12. [3, 128, 256, 2, False],
  13. [5, 256, 256, 1, False],
  14. [5, 256, 256, 1, False],
  15. [5, 256, 256, 1, False],
  16. [5, 256, 256, 1, False],
  17. ],
  18. 'blocks6': [
  19. [5, 256, 512, 2, True],
  20. [5, 512, 512, 1, True],
  21. [5, 512, 512, 1, False],
  22. [5, 512, 512, 1, False],
  23. ],
  24. }
  25. NET_CONFIG_rec = {
  26. 'blocks2':
  27. # k, in_c, out_c, s, use_se
  28. [[3, 16, 32, 1, False]],
  29. 'blocks3': [[3, 32, 64, 1, False], [3, 64, 64, 1, False]],
  30. 'blocks4': [[3, 64, 128, (2, 1), False], [3, 128, 128, 1, False]],
  31. 'blocks5': [
  32. [3, 128, 256, (1, 2), False],
  33. [5, 256, 256, 1, False],
  34. [5, 256, 256, 1, False],
  35. [5, 256, 256, 1, False],
  36. [5, 256, 256, 1, False],
  37. ],
  38. 'blocks6': [
  39. [5, 256, 512, (2, 1), True],
  40. [5, 512, 512, 1, True],
  41. [5, 512, 512, (2, 1), False],
  42. [5, 512, 512, 1, False],
  43. ],
  44. }
  45. def make_divisible(v, divisor=16, min_value=None):
  46. if min_value is None:
  47. min_value = divisor
  48. new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
  49. if new_v < 0.9 * v:
  50. new_v += divisor
  51. return new_v
  52. class LearnableAffineBlock(nn.Module):
  53. def __init__(self,
  54. scale_value=1.0,
  55. bias_value=0.0,
  56. lr_mult=1.0,
  57. lab_lr=0.1):
  58. super().__init__()
  59. self.scale = nn.Parameter(torch.Tensor([scale_value]))
  60. self.bias = nn.Parameter(torch.Tensor([bias_value]))
  61. def forward(self, x):
  62. return self.scale * x + self.bias
  63. class ConvBNLayer(nn.Module):
  64. def __init__(self,
  65. in_channels,
  66. out_channels,
  67. kernel_size,
  68. stride,
  69. groups=1,
  70. lr_mult=1.0):
  71. super().__init__()
  72. self.conv = nn.Conv2d(
  73. in_channels=in_channels,
  74. out_channels=out_channels,
  75. kernel_size=kernel_size,
  76. stride=stride,
  77. padding=(kernel_size - 1) // 2,
  78. groups=groups,
  79. bias=False,
  80. )
  81. self.bn = nn.BatchNorm2d(out_channels)
  82. def forward(self, x):
  83. x = self.conv(x)
  84. x = self.bn(x)
  85. return x
  86. class Act(nn.Module):
  87. def __init__(self, act='hard_swish', lr_mult=1.0, lab_lr=0.1):
  88. super().__init__()
  89. assert act in ['hard_swish', 'relu']
  90. self.act = Activation(act)
  91. self.lab = LearnableAffineBlock(lr_mult=lr_mult, lab_lr=lab_lr)
  92. def forward(self, x):
  93. return self.lab(self.act(x))
  94. class LearnableRepLayer(nn.Module):
  95. def __init__(
  96. self,
  97. in_channels,
  98. out_channels,
  99. kernel_size,
  100. stride=1,
  101. groups=1,
  102. num_conv_branches=1,
  103. lr_mult=1.0,
  104. lab_lr=0.1,
  105. ):
  106. super().__init__()
  107. self.is_repped = False
  108. self.groups = groups
  109. self.stride = stride
  110. self.kernel_size = kernel_size
  111. self.in_channels = in_channels
  112. self.out_channels = out_channels
  113. self.num_conv_branches = num_conv_branches
  114. self.padding = (kernel_size - 1) // 2
  115. self.identity = (nn.BatchNorm2d(in_channels) if
  116. out_channels == in_channels and stride == 1 else None)
  117. self.conv_kxk = nn.ModuleList([
  118. ConvBNLayer(
  119. in_channels,
  120. out_channels,
  121. kernel_size,
  122. stride,
  123. groups=groups,
  124. lr_mult=lr_mult,
  125. ) for _ in range(self.num_conv_branches)
  126. ])
  127. self.conv_1x1 = (ConvBNLayer(in_channels,
  128. out_channels,
  129. 1,
  130. stride,
  131. groups=groups,
  132. lr_mult=lr_mult)
  133. if kernel_size > 1 else None)
  134. self.lab = LearnableAffineBlock(lr_mult=lr_mult, lab_lr=lab_lr)
  135. self.act = Act(lr_mult=lr_mult, lab_lr=lab_lr)
  136. def forward(self, x):
  137. # for export
  138. if self.is_repped:
  139. out = self.lab(self.reparam_conv(x))
  140. if self.stride != 2:
  141. out = self.act(out)
  142. return out
  143. out = 0
  144. if self.identity is not None:
  145. out += self.identity(x)
  146. if self.conv_1x1 is not None:
  147. out += self.conv_1x1(x)
  148. for conv in self.conv_kxk:
  149. out += conv(x)
  150. out = self.lab(out)
  151. if self.stride != 2:
  152. out = self.act(out)
  153. return out
  154. def rep(self):
  155. if self.is_repped:
  156. return
  157. kernel, bias = self._get_kernel_bias()
  158. self.reparam_conv = nn.Conv2d(
  159. in_channels=self.in_channels,
  160. out_channels=self.out_channels,
  161. kernel_size=self.kernel_size,
  162. stride=self.stride,
  163. padding=self.padding,
  164. groups=self.groups,
  165. )
  166. self.reparam_conv.weight.data = kernel
  167. self.reparam_conv.bias.data = bias
  168. self.is_repped = True
  169. def _pad_kernel_1x1_to_kxk(self, kernel1x1, pad):
  170. if not isinstance(kernel1x1, torch.Tensor):
  171. return 0
  172. else:
  173. return nn.functional.pad(kernel1x1, [pad, pad, pad, pad])
  174. def _get_kernel_bias(self):
  175. kernel_conv_1x1, bias_conv_1x1 = self._fuse_bn_tensor(self.conv_1x1)
  176. kernel_conv_1x1 = self._pad_kernel_1x1_to_kxk(kernel_conv_1x1,
  177. self.kernel_size // 2)
  178. kernel_identity, bias_identity = self._fuse_bn_tensor(self.identity)
  179. kernel_conv_kxk = 0
  180. bias_conv_kxk = 0
  181. for conv in self.conv_kxk:
  182. kernel, bias = self._fuse_bn_tensor(conv)
  183. kernel_conv_kxk += kernel
  184. bias_conv_kxk += bias
  185. kernel_reparam = kernel_conv_kxk + kernel_conv_1x1 + kernel_identity
  186. bias_reparam = bias_conv_kxk + bias_conv_1x1 + bias_identity
  187. return kernel_reparam, bias_reparam
  188. def _fuse_bn_tensor(self, branch):
  189. if not branch:
  190. return 0, 0
  191. elif isinstance(branch, ConvBNLayer):
  192. kernel = branch.conv.weight
  193. running_mean = branch.bn.running_mean
  194. running_var = branch.bn.running_var
  195. gamma = branch.bn.weight
  196. beta = branch.bn.bias
  197. eps = branch.bn.eps
  198. else:
  199. assert isinstance(branch, nn.BatchNorm2d)
  200. if not hasattr(self, 'id_tensor'):
  201. input_dim = self.in_channels // self.groups
  202. kernel_value = torch.zeros(
  203. (self.in_channels, input_dim, self.kernel_size,
  204. self.kernel_size),
  205. dtype=branch.weight.dtype,
  206. )
  207. for i in range(self.in_channels):
  208. kernel_value[i, i % input_dim, self.kernel_size // 2,
  209. self.kernel_size // 2] = 1
  210. self.id_tensor = kernel_value
  211. kernel = self.id_tensor
  212. running_mean = branch.running_mean
  213. running_var = branch.running_var
  214. gamma = branch.weight
  215. beta = branch.bias
  216. eps = branch.eps
  217. std = (running_var + eps).sqrt()
  218. t = (gamma / std).reshape((-1, 1, 1, 1))
  219. return kernel * t, beta - running_mean * gamma / std
  220. class SELayer(nn.Module):
  221. def __init__(self, channel, reduction=4, lr_mult=1.0):
  222. super().__init__()
  223. self.avg_pool = nn.AdaptiveAvgPool2d(1)
  224. self.conv1 = nn.Conv2d(
  225. in_channels=channel,
  226. out_channels=channel // reduction,
  227. kernel_size=1,
  228. stride=1,
  229. padding=0,
  230. )
  231. self.relu = nn.ReLU()
  232. self.conv2 = nn.Conv2d(
  233. in_channels=channel // reduction,
  234. out_channels=channel,
  235. kernel_size=1,
  236. stride=1,
  237. padding=0,
  238. )
  239. self.hardsigmoid = Activation('hard_sigmoid')
  240. def forward(self, x):
  241. identity = x
  242. x = self.avg_pool(x)
  243. x = self.conv1(x)
  244. x = self.relu(x)
  245. x = self.conv2(x)
  246. x = self.hardsigmoid(x)
  247. x = x * identity
  248. return x
  249. class LCNetV3Block(nn.Module):
  250. def __init__(
  251. self,
  252. in_channels,
  253. out_channels,
  254. stride,
  255. dw_size,
  256. use_se=False,
  257. conv_kxk_num=4,
  258. lr_mult=1.0,
  259. lab_lr=0.1,
  260. ):
  261. super().__init__()
  262. self.use_se = use_se
  263. self.dw_conv = LearnableRepLayer(
  264. in_channels=in_channels,
  265. out_channels=in_channels,
  266. kernel_size=dw_size,
  267. stride=stride,
  268. groups=in_channels,
  269. num_conv_branches=conv_kxk_num,
  270. lr_mult=lr_mult,
  271. lab_lr=lab_lr,
  272. )
  273. if use_se:
  274. self.se = SELayer(in_channels, lr_mult=lr_mult)
  275. self.pw_conv = LearnableRepLayer(
  276. in_channels=in_channels,
  277. out_channels=out_channels,
  278. kernel_size=1,
  279. stride=1,
  280. num_conv_branches=conv_kxk_num,
  281. lr_mult=lr_mult,
  282. lab_lr=lab_lr,
  283. )
  284. def forward(self, x):
  285. x = self.dw_conv(x)
  286. if self.use_se:
  287. x = self.se(x)
  288. x = self.pw_conv(x)
  289. return x
  290. class PPLCNetV3(nn.Module):
  291. def __init__(self,
  292. scale=1.0,
  293. conv_kxk_num=4,
  294. lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
  295. lab_lr=0.1,
  296. det=False,
  297. **kwargs):
  298. super().__init__()
  299. self.scale = scale
  300. self.lr_mult_list = lr_mult_list
  301. self.det = det
  302. self.net_config = NET_CONFIG_det if self.det else NET_CONFIG_rec
  303. assert isinstance(
  304. self.lr_mult_list,
  305. (list, tuple
  306. )), 'lr_mult_list should be in (list, tuple) but got {}'.format(
  307. type(self.lr_mult_list))
  308. assert len(self.lr_mult_list
  309. ) == 6, 'lr_mult_list length should be 6 but got {}'.format(
  310. len(self.lr_mult_list))
  311. self.conv1 = ConvBNLayer(
  312. in_channels=3,
  313. out_channels=make_divisible(16 * scale),
  314. kernel_size=3,
  315. stride=2,
  316. lr_mult=self.lr_mult_list[0],
  317. )
  318. self.blocks2 = nn.Sequential(*[
  319. LCNetV3Block(
  320. in_channels=make_divisible(in_c * scale),
  321. out_channels=make_divisible(out_c * scale),
  322. dw_size=k,
  323. stride=s,
  324. use_se=se,
  325. conv_kxk_num=conv_kxk_num,
  326. lr_mult=self.lr_mult_list[1],
  327. lab_lr=lab_lr,
  328. ) for i, (k, in_c, out_c, s,
  329. se) in enumerate(self.net_config['blocks2'])
  330. ])
  331. self.blocks3 = nn.Sequential(*[
  332. LCNetV3Block(
  333. in_channels=make_divisible(in_c * scale),
  334. out_channels=make_divisible(out_c * scale),
  335. dw_size=k,
  336. stride=s,
  337. use_se=se,
  338. conv_kxk_num=conv_kxk_num,
  339. lr_mult=self.lr_mult_list[2],
  340. lab_lr=lab_lr,
  341. ) for i, (k, in_c, out_c, s,
  342. se) in enumerate(self.net_config['blocks3'])
  343. ])
  344. self.blocks4 = nn.Sequential(*[
  345. LCNetV3Block(
  346. in_channels=make_divisible(in_c * scale),
  347. out_channels=make_divisible(out_c * scale),
  348. dw_size=k,
  349. stride=s,
  350. use_se=se,
  351. conv_kxk_num=conv_kxk_num,
  352. lr_mult=self.lr_mult_list[3],
  353. lab_lr=lab_lr,
  354. ) for i, (k, in_c, out_c, s,
  355. se) in enumerate(self.net_config['blocks4'])
  356. ])
  357. self.blocks5 = nn.Sequential(*[
  358. LCNetV3Block(
  359. in_channels=make_divisible(in_c * scale),
  360. out_channels=make_divisible(out_c * scale),
  361. dw_size=k,
  362. stride=s,
  363. use_se=se,
  364. conv_kxk_num=conv_kxk_num,
  365. lr_mult=self.lr_mult_list[4],
  366. lab_lr=lab_lr,
  367. ) for i, (k, in_c, out_c, s,
  368. se) in enumerate(self.net_config['blocks5'])
  369. ])
  370. self.blocks6 = nn.Sequential(*[
  371. LCNetV3Block(
  372. in_channels=make_divisible(in_c * scale),
  373. out_channels=make_divisible(out_c * scale),
  374. dw_size=k,
  375. stride=s,
  376. use_se=se,
  377. conv_kxk_num=conv_kxk_num,
  378. lr_mult=self.lr_mult_list[5],
  379. lab_lr=lab_lr,
  380. ) for i, (k, in_c, out_c, s,
  381. se) in enumerate(self.net_config['blocks6'])
  382. ])
  383. self.out_channels = make_divisible(512 * scale)
  384. if self.det:
  385. mv_c = [16, 24, 56, 480]
  386. self.out_channels = [
  387. make_divisible(self.net_config['blocks3'][-1][2] * scale),
  388. make_divisible(self.net_config['blocks4'][-1][2] * scale),
  389. make_divisible(self.net_config['blocks5'][-1][2] * scale),
  390. make_divisible(self.net_config['blocks6'][-1][2] * scale),
  391. ]
  392. self.layer_list = nn.ModuleList([
  393. nn.Conv2d(self.out_channels[0], int(mv_c[0] * scale), 1, 1, 0),
  394. nn.Conv2d(self.out_channels[1], int(mv_c[1] * scale), 1, 1, 0),
  395. nn.Conv2d(self.out_channels[2], int(mv_c[2] * scale), 1, 1, 0),
  396. nn.Conv2d(self.out_channels[3], int(mv_c[3] * scale), 1, 1, 0),
  397. ])
  398. self.out_channels = [
  399. int(mv_c[0] * scale),
  400. int(mv_c[1] * scale),
  401. int(mv_c[2] * scale),
  402. int(mv_c[3] * scale),
  403. ]
  404. def forward(self, x):
  405. out_list = []
  406. x = self.conv1(x)
  407. x = self.blocks2(x)
  408. x = self.blocks3(x)
  409. out_list.append(x)
  410. x = self.blocks4(x)
  411. out_list.append(x)
  412. x = self.blocks5(x)
  413. out_list.append(x)
  414. x = self.blocks6(x)
  415. out_list.append(x)
  416. if self.det:
  417. out_list[0] = self.layer_list[0](out_list[0])
  418. out_list[1] = self.layer_list[1](out_list[1])
  419. out_list[2] = self.layer_list[2](out_list[2])
  420. out_list[3] = self.layer_list[3](out_list[3])
  421. return out_list
  422. if self.training:
  423. x = F.adaptive_avg_pool2d(x, [1, 40])
  424. else:
  425. x = F.avg_pool2d(x, [3, 2])
  426. return x