123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631 |
- # --------------------------------------------------------
- # FocalNets -- Focal Modulation Networks
- # Copyright (c) 2022 Microsoft
- # Licensed under The MIT License [see LICENSE for details]
- # Written by Jianwei Yang (jianwyan@microsoft.com)
- # --------------------------------------------------------
- import torch
- import torch.nn as nn
- import torch.utils.checkpoint as checkpoint
- from torch.nn.init import trunc_normal_
- from openrec.modeling.common import DropPath, Mlp
- from openrec.modeling.encoders.svtrnet import ConvBNLayer
- class FocalModulation(nn.Module):
- def __init__(self,
- dim,
- focal_window,
- focal_level,
- max_kh=None,
- focal_factor=2,
- bias=True,
- proj_drop=0.0,
- use_postln_in_modulation=False,
- normalize_modulator=False):
- super().__init__()
- self.dim = dim
- self.focal_window = focal_window
- self.focal_level = focal_level
- self.focal_factor = focal_factor
- self.use_postln_in_modulation = use_postln_in_modulation
- self.normalize_modulator = normalize_modulator
- self.f = nn.Linear(dim, 2 * dim + (self.focal_level + 1), bias=bias)
- self.h = nn.Conv2d(dim, dim, kernel_size=1, stride=1, bias=bias)
- self.act = nn.GELU()
- self.proj = nn.Linear(dim, dim)
- self.proj_drop = nn.Dropout(proj_drop)
- self.focal_layers = nn.ModuleList()
- self.kernel_sizes = []
- for k in range(self.focal_level):
- kernel_size = self.focal_factor * k + self.focal_window
- if max_kh is not None:
- k_h, k_w = [min(kernel_size, max_kh), kernel_size]
- kernel_size = [k_h, k_w]
- padding = [k_h // 2, k_w // 2]
- else:
- padding = kernel_size // 2
- self.focal_layers.append(
- nn.Sequential(
- nn.Conv2d(dim,
- dim,
- kernel_size=kernel_size,
- stride=1,
- groups=dim,
- padding=padding,
- bias=False),
- nn.GELU(),
- ))
- self.kernel_sizes.append(kernel_size)
- if self.use_postln_in_modulation:
- self.ln = nn.LayerNorm(dim)
- def forward(self, x):
- """
- Args:
- x: input features with shape of (B, H, W, C)
- """
- C = x.shape[-1]
- # pre linear projection
- x = self.f(x).permute(0, 3, 1, 2).contiguous()
- q, ctx, self.gates = torch.split(x, (C, C, self.focal_level + 1), 1)
- # context aggreation
- ctx_all = 0
- for l in range(self.focal_level):
- ctx = self.focal_layers[l](ctx)
- ctx_all = ctx_all + ctx * self.gates[:, l:l + 1]
- ctx_global = self.act(ctx.mean(2, keepdim=True).mean(3, keepdim=True))
- ctx_all = ctx_all + ctx_global * self.gates[:, self.focal_level:]
- # normalize context
- if self.normalize_modulator:
- ctx_all = ctx_all / (self.focal_level + 1)
- # focal modulation
- self.modulator = self.h(ctx_all)
- x_out = q * self.modulator
- x_out = x_out.permute(0, 2, 3, 1).contiguous()
- if self.use_postln_in_modulation:
- x_out = self.ln(x_out)
- # post linear porjection
- x_out = self.proj(x_out)
- x_out = self.proj_drop(x_out)
- return x_out
- def extra_repr(self) -> str:
- return f'dim={self.dim}'
- def flops(self, N):
- # calculate flops for 1 window with token length of N
- flops = 0
- flops += N * self.dim * (self.dim * 2 + (self.focal_level + 1))
- # focal convolution
- for k in range(self.focal_level):
- flops += N * (self.kernel_sizes[k]**2 + 1) * self.dim
- # global gating
- flops += N * 1 * self.dim
- # self.linear
- flops += N * self.dim * (self.dim + 1)
- # x = self.proj(x)
- flops += N * self.dim * self.dim
- return flops
- class FocalNetBlock(nn.Module):
- r"""Focal Modulation Network Block.
- Args:
- dim (int): Number of input channels.
- input_resolution (tuple[int]): Input resulotion.
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
- drop (float, optional): Dropout rate. Default: 0.0
- drop_path (float, optional): Stochastic depth rate. Default: 0.0
- act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
- focal_level (int): Number of focal levels.
- focal_window (int): Focal window size at first focal level
- use_layerscale (bool): Whether use layerscale
- layerscale_value (float): Initial layerscale value
- use_postln (bool): Whether use layernorm after modulation
- """
- def __init__(
- self,
- dim,
- input_resolution=None,
- mlp_ratio=4.0,
- drop=0.0,
- drop_path=0.0,
- act_layer=nn.GELU,
- norm_layer=nn.LayerNorm,
- focal_level=1,
- focal_window=3,
- max_kh=None,
- use_layerscale=False,
- layerscale_value=1e-4,
- use_postln=False,
- use_postln_in_modulation=False,
- normalize_modulator=False,
- ):
- super().__init__()
- self.dim = dim
- self.input_resolution = input_resolution
- self.mlp_ratio = mlp_ratio
- self.focal_window = focal_window
- self.focal_level = focal_level
- self.use_postln = use_postln
- self.norm1 = norm_layer(dim)
- self.modulation = FocalModulation(
- dim,
- proj_drop=drop,
- focal_window=focal_window,
- focal_level=self.focal_level,
- max_kh=max_kh,
- use_postln_in_modulation=use_postln_in_modulation,
- normalize_modulator=normalize_modulator,
- )
- self.drop_path = DropPath(
- drop_path) if drop_path > 0.0 else nn.Identity()
- self.norm2 = norm_layer(dim)
- mlp_hidden_dim = int(dim * mlp_ratio)
- self.mlp = Mlp(in_features=dim,
- hidden_features=mlp_hidden_dim,
- act_layer=act_layer,
- drop=drop)
- self.gamma_1 = 1.0
- self.gamma_2 = 1.0
- if use_layerscale:
- self.gamma_1 = nn.Parameter(layerscale_value * torch.ones((dim)),
- requires_grad=True)
- self.gamma_2 = nn.Parameter(layerscale_value * torch.ones((dim)),
- requires_grad=True)
- self.H = None
- self.W = None
- def forward(self, x):
- H, W = self.H, self.W
- B, L, C = x.shape
- shortcut = x
- # Focal Modulation
- x = x if self.use_postln else self.norm1(x)
- x = x.view(B, H, W, C)
- x = self.modulation(x).view(B, H * W, C)
- x = x if not self.use_postln else self.norm1(x)
- # FFN
- x = shortcut + self.drop_path(self.gamma_1 * x)
- x = x + self.drop_path(self.gamma_2 * (self.norm2(
- self.mlp(x)) if self.use_postln else self.mlp(self.norm2(x))))
- return x
- def extra_repr(self) -> str:
- return f'dim={self.dim}, input_resolution={self.input_resolution}, ' f'mlp_ratio={self.mlp_ratio}'
- def flops(self):
- flops = 0
- H, W = self.input_resolution
- # norm1
- flops += self.dim * H * W
- # W-MSA/SW-MSA
- flops += self.modulation.flops(H * W)
- # mlp
- flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
- # norm2
- flops += self.dim * H * W
- return flops
- class BasicLayer(nn.Module):
- """A basic Focal Transformer layer for one stage.
- Args:
- dim (int): Number of input channels.
- input_resolution (tuple[int]): Input resolution.
- depth (int): Number of blocks.
- window_size (int): Local window size.
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
- drop (float, optional): Dropout rate. Default: 0.0
- drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
- downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
- use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
- focal_level (int): Number of focal levels
- focal_window (int): Focal window size at first focal level
- use_layerscale (bool): Whether use layerscale
- layerscale_value (float): Initial layerscale value
- use_postln (bool): Whether use layernorm after modulation
- """
- def __init__(
- self,
- dim,
- out_dim,
- input_resolution,
- depth,
- mlp_ratio=4.0,
- drop=0.0,
- drop_path=0.0,
- norm_layer=nn.LayerNorm,
- downsample=None,
- downsample_kernel=[],
- use_checkpoint=False,
- focal_level=1,
- focal_window=1,
- use_conv_embed=False,
- use_layerscale=False,
- layerscale_value=1e-4,
- use_postln=False,
- use_postln_in_modulation=False,
- normalize_modulator=False,
- ):
- super().__init__()
- self.dim = dim
- self.input_resolution = input_resolution
- self.depth = depth
- self.use_checkpoint = use_checkpoint
- # build blocks
- self.blocks = nn.ModuleList([
- FocalNetBlock(
- dim=dim,
- input_resolution=input_resolution,
- mlp_ratio=mlp_ratio,
- drop=drop,
- drop_path=drop_path[i]
- if isinstance(drop_path, list) else drop_path,
- norm_layer=norm_layer,
- focal_level=focal_level,
- focal_window=focal_window,
- use_layerscale=use_layerscale,
- layerscale_value=layerscale_value,
- use_postln=use_postln,
- use_postln_in_modulation=use_postln_in_modulation,
- normalize_modulator=normalize_modulator,
- ) for i in range(depth)
- ])
- if downsample is not None:
- self.downsample = downsample(
- img_size=input_resolution,
- patch_size=downsample_kernel,
- in_chans=dim,
- embed_dim=out_dim,
- use_conv_embed=use_conv_embed,
- norm_layer=norm_layer,
- is_stem=False,
- )
- else:
- self.downsample = None
- def forward(self, x, H, W):
- for blk in self.blocks:
- blk.H, blk.W = H, W
- if self.use_checkpoint:
- x = checkpoint.checkpoint(blk, x)
- else:
- x = blk(x)
- if self.downsample is not None:
- x = x.transpose(1, 2).reshape(x.shape[0], -1, H, W)
- x, Ho, Wo = self.downsample(x)
- else:
- Ho, Wo = H, W
- return x, Ho, Wo
- def extra_repr(self) -> str:
- return f'dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}'
- def flops(self):
- flops = 0
- for blk in self.blocks:
- flops += blk.flops()
- if self.downsample is not None:
- flops += self.downsample.flops()
- return flops
- class PatchEmbed(nn.Module):
- r"""Image to Patch Embedding
- Args:
- img_size (int): Image size. Default: 224.
- patch_size (int): Patch token size. Default: 4.
- in_chans (int): Number of input image channels. Default: 3.
- embed_dim (int): Number of linear projection output channels. Default: 96.
- norm_layer (nn.Module, optional): Normalization layer. Default: None
- """
- def __init__(self,
- img_size=(224, 224),
- patch_size=[4, 4],
- in_chans=3,
- embed_dim=96,
- use_conv_embed=False,
- norm_layer=None,
- is_stem=False):
- super().__init__()
- # patch_size = to_2tuple(patch_size)
- patches_resolution = [
- img_size[0] // patch_size[0], img_size[1] // patch_size[1]
- ]
- self.img_size = img_size
- self.patch_size = patch_size
- self.patches_resolution = patches_resolution
- self.num_patches = patches_resolution[0] * patches_resolution[1]
- self.in_chans = in_chans
- self.embed_dim = embed_dim
- if use_conv_embed:
- # if we choose to use conv embedding, then we treat the stem and non-stem differently
- if is_stem:
- kernel_size = 7
- padding = 2
- stride = 4
- else:
- kernel_size = 3
- padding = 1
- stride = 2
- self.proj = nn.Conv2d(in_chans,
- embed_dim,
- kernel_size=kernel_size,
- stride=stride,
- padding=padding)
- else:
- self.proj = nn.Conv2d(in_chans,
- embed_dim,
- kernel_size=patch_size,
- stride=patch_size)
- if norm_layer is not None:
- self.norm = norm_layer(embed_dim)
- else:
- self.norm = None
- def forward(self, x):
- B, C, H, W = x.shape
- x = self.proj(x)
- H, W = x.shape[2:]
- x = x.flatten(2).transpose(1, 2) # B Ph*Pw C
- if self.norm is not None:
- x = self.norm(x)
- return x, H, W
- def flops(self):
- Ho, Wo = self.patches_resolution
- flops = Ho * Wo * self.embed_dim * self.in_chans * (
- self.patch_size[0] * self.patch_size[1])
- if self.norm is not None:
- flops += Ho * Wo * self.embed_dim
- return flops
- class FocalSVTR(nn.Module):
- r"""Focal Modulation Networks (FocalNets)
- Args:
- img_size (int | tuple(int)): Input image size. Default [32, 128]
- patch_size (int | tuple(int)): Patch size. Default: [4, 4]
- in_chans (int): Number of input image channels. Default: 3
- num_classes (int): Number of classes for classification head. Default: 1000
- embed_dim (int): Patch embedding dimension. Default: 96
- depths (tuple(int)): Depth of each Focal Transformer layer.
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
- drop_rate (float): Dropout rate. Default: 0
- drop_path_rate (float): Stochastic depth rate. Default: 0.1
- norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
- patch_norm (bool): If True, add normalization after patch embedding. Default: True
- use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
- focal_levels (list): How many focal levels at all stages. Note that this excludes the finest-grain level. Default: [1, 1, 1, 1]
- focal_windows (list): The focal window size at all stages. Default: [7, 5, 3, 1]
- use_conv_embed (bool): Whether use convolutional embedding. We noted that using convolutional embedding usually improve the performance,
- but we do not use it by default. Default: False
- use_layerscale (bool): Whether use layerscale proposed in CaiT. Default: False
- layerscale_value (float): Value for layer scale. Default: 1e-4
- use_postln (bool): Whether use layernorm after modulation (it helps stablize training of large models)
- """
- def __init__(
- self,
- img_size=[32, 128],
- patch_size=[4, 4],
- out_channels=256,
- out_char_num=25,
- in_channels=3,
- embed_dim=96,
- depths=[3, 6, 3],
- sub_k=[[2, 1], [2, 1], [1, 1]],
- last_stage=False,
- mlp_ratio=4.0,
- drop_rate=0.0,
- drop_path_rate=0.1,
- norm_layer=nn.LayerNorm,
- patch_norm=True,
- use_checkpoint=False,
- focal_levels=[6, 6, 6],
- focal_windows=[3, 3, 3],
- use_conv_embed=False,
- use_layerscale=False,
- layerscale_value=1e-4,
- use_postln=False,
- use_postln_in_modulation=False,
- normalize_modulator=False,
- feat2d=False,
- **kwargs,
- ):
- super().__init__()
- self.num_layers = len(depths)
- embed_dim = [embed_dim * (2**i) for i in range(self.num_layers)]
- self.feat2d = feat2d
- self.embed_dim = embed_dim
- self.patch_norm = patch_norm
- self.num_features = embed_dim[-1]
- self.mlp_ratio = mlp_ratio
- self.patch_embed = nn.Sequential(
- ConvBNLayer(
- in_channels=in_channels,
- out_channels=embed_dim[0] // 2,
- kernel_size=3,
- stride=2,
- padding=1,
- act=nn.GELU,
- bias=None,
- ),
- ConvBNLayer(
- in_channels=embed_dim[0] // 2,
- out_channels=embed_dim[0],
- kernel_size=3,
- stride=2,
- padding=1,
- act=nn.GELU,
- bias=None,
- ),
- )
- patches_resolution = [
- img_size[0] // patch_size[0], img_size[1] // patch_size[1]
- ]
- self.patches_resolution = patches_resolution
- self.pos_drop = nn.Dropout(p=drop_rate)
- # stochastic depth
- dpr = [
- x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
- ] # stochastic depth decay rule
- # build layers
- self.layers = nn.ModuleList()
- for i_layer in range(self.num_layers):
- layer = BasicLayer(
- dim=embed_dim[i_layer],
- out_dim=embed_dim[i_layer + 1] if
- (i_layer < self.num_layers - 1) else None,
- input_resolution=patches_resolution,
- depth=depths[i_layer],
- mlp_ratio=self.mlp_ratio,
- drop=drop_rate,
- drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
- norm_layer=norm_layer,
- downsample=PatchEmbed if
- (i_layer < self.num_layers - 1) else None,
- downsample_kernel=sub_k[i_layer],
- focal_level=focal_levels[i_layer],
- focal_window=focal_windows[i_layer],
- use_conv_embed=use_conv_embed,
- use_checkpoint=use_checkpoint,
- use_layerscale=use_layerscale,
- layerscale_value=layerscale_value,
- use_postln=use_postln,
- use_postln_in_modulation=use_postln_in_modulation,
- normalize_modulator=normalize_modulator,
- )
- patches_resolution = [
- patches_resolution[0] // sub_k[i_layer][0],
- patches_resolution[1] // sub_k[i_layer][1]
- ]
- self.layers.append(layer)
- self.out_channels = self.num_features
- self.last_stage = last_stage
- if last_stage:
- self.out_channels = out_channels
- self.last_conv = nn.Linear(self.num_features,
- self.out_channels,
- bias=False)
- self.hardswish = nn.Hardswish()
- self.dropout = nn.Dropout(p=0.1)
- # self.avg_pool = nn.AdaptiveAvgPool2d([1, out_char_num])
- # self.last_conv = nn.Conv2d(
- # in_channels=self.num_features,
- # out_channels=self.out_channels,
- # kernel_size=1,
- # stride=1,
- # padding=0,
- # bias=False,
- # )
- # self.hardswish = nn.Hardswish()
- # self.dropout = nn.Dropout(p=0.1)
- self.apply(self._init_weights)
- def _init_weights(self, m):
- if isinstance(m, nn.Linear):
- trunc_normal_(m.weight, std=0.02)
- if isinstance(m, nn.Linear) and m.bias is not None:
- nn.init.constant_(m.bias, 0)
- elif isinstance(m, nn.LayerNorm):
- nn.init.constant_(m.bias, 0)
- nn.init.constant_(m.weight, 1.0)
- elif isinstance(m, nn.Conv2d):
- nn.init.kaiming_normal_(m.weight,
- mode='fan_out',
- nonlinearity='relu')
- @torch.jit.ignore
- def no_weight_decay(self):
- return {'patch_embed', 'downsample'}
- def forward(self, x):
- if len(x.shape) == 5:
- x = x.flatten(0, 1)
- x = self.patch_embed(x)
- H, W = x.shape[2:]
- x = x.flatten(2).transpose(1, 2) # B Ph*Pw C
- x = self.pos_drop(x)
- for layer in self.layers:
- x, H, W = layer(x, H, W)
- if self.feat2d:
- x = x.transpose(1, 2).reshape(-1, self.num_features, H, W)
- if self.last_stage:
- x = x.reshape(-1, H, W, self.num_features).mean(1)
- x = self.last_conv(x)
- x = self.hardswish(x)
- x = self.dropout(x)
- # x = self.avg_pool(x.transpose(1, 2).reshape(-1, self.num_features, H, W))
- # x = self.last_conv(x)
- # x = self.hardswish(x)
- # x = self.dropout(x)
- # x = x.flatten(2).transpose(1, 2)
- return x
- def flops(self):
- flops = 0
- flops += self.patch_embed.flops()
- for i, layer in enumerate(self.layers):
- flops += layer.flops()
- flops += self.num_features * self.patches_resolution[
- 0] * self.patches_resolution[1] // (2**self.num_layers)
- return flops
|