123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from .nrtr_decoder import Embeddings, TransformerBlock
- class PVAM(nn.Module):
- def __init__(self,
- in_channels,
- char_num,
- max_text_length,
- num_heads,
- hidden_dims,
- dropout_rate=0):
- super(PVAM, self).__init__()
- self.char_num = char_num
- self.max_length = max_text_length
- self.num_heads = num_heads
- self.hidden_dims = hidden_dims
- self.dropout_rate = dropout_rate
- #TODO
- self.emb = nn.Embedding(num_embeddings=256,
- embedding_dim=hidden_dims,
- sparse=False)
- self.drop_out = nn.Dropout(dropout_rate)
- self.feat_emb = nn.Linear(in_channels, in_channels)
- self.token_emb = nn.Embedding(max_text_length, in_channels)
- self.score = nn.Linear(in_channels, 1, bias=False)
- def feat_pos_mix(self, conv_features, encoder_word_pos, dropout_rate):
- #b h*w c
- pos_emb = self.emb(encoder_word_pos)
- # pos_emb = pos_emb.detach()
- enc_input = conv_features + pos_emb
- if dropout_rate:
- enc_input = self.drop_out(enc_input)
- return enc_input
- def forward(self, inputs):
- b, c, h, w = inputs.shape
- conv_features = inputs.view(-1, c, h * w)
- conv_features = conv_features.permute(0, 2, 1).contiguous()
- # b h*w c
- # transformer encoder
- b, t, c = conv_features.shape
- encoder_feat_pos = torch.arange(t, dtype=torch.long).to(inputs.device)
- enc_inputs = self.feat_pos_mix(conv_features, encoder_feat_pos,
- self.dropout_rate)
- inputs = self.feat_emb(enc_inputs) # feat emb
- inputs = inputs.unsqueeze(1).expand(-1, self.max_length, -1, -1)
- # b maxlen h*w c
- tokens_pos = torch.arange(self.max_length,
- dtype=torch.long).to(inputs.device)
- tokens_pos = tokens_pos.unsqueeze(0).expand(b, -1)
- tokens_pos_emd = self.token_emb(tokens_pos)
- tokens_pos_emd = tokens_pos_emd.unsqueeze(2).expand(-1, -1, t, -1)
- # b maxlen h*w c
- attention_weight = torch.tanh(tokens_pos_emd + inputs)
- attention_weight = torch.squeeze(self.score(attention_weight),
- -1) #b,25,256
- attention_weight = F.softmax(attention_weight, dim=-1) #b,25,256
- pvam_features = torch.matmul(attention_weight, enc_inputs)
- return pvam_features
- class GSRM(nn.Module):
- def __init__(self,
- in_channel,
- char_num,
- max_len,
- num_heads,
- hidden_dims,
- num_layers,
- dropout_rate=0,
- attention_dropout=0.1):
- super(GSRM, self).__init__()
- self.char_num = char_num
- self.max_len = max_len
- self.num_heads = num_heads
- self.cls_op = nn.Linear(in_channel, self.char_num)
- self.cls_final = nn.Linear(in_channel, self.char_num)
- self.word_emb = Embeddings(d_model=hidden_dims, vocab=char_num)
- self.pos_emb = nn.Embedding(char_num, hidden_dims)
- self.dropout_rate = dropout_rate
- self.emb_drop_out = nn.Dropout(dropout_rate)
- self.forward_self_attn = nn.ModuleList([
- TransformerBlock(
- d_model=hidden_dims,
- nhead=num_heads,
- attention_dropout_rate=attention_dropout,
- residual_dropout_rate=0.1,
- dim_feedforward=hidden_dims,
- with_self_attn=True,
- with_cross_attn=False,
- ) for i in range(num_layers)
- ])
- self.backward_self_attn = nn.ModuleList([
- TransformerBlock(
- d_model=hidden_dims,
- nhead=num_heads,
- attention_dropout_rate=attention_dropout,
- residual_dropout_rate=0.1,
- dim_feedforward=hidden_dims,
- with_self_attn=True,
- with_cross_attn=False,
- ) for i in range(num_layers)
- ])
- def _pos_emb(self, word_seq, pos, dropoutrate):
- """
- word_Seq: bsz len
- pos: bsz len
- """
- word_emb_seq = self.word_emb(word_seq)
- pos_emb_seq = self.pos_emb(pos)
- # pos_emb_seq = pos_emb_seq.detach()
- input_mix = word_emb_seq + pos_emb_seq
- if dropoutrate > 0:
- input_mix = self.emb_drop_out(input_mix)
- return input_mix
- def forward(self, inputs):
- bos_idx = self.char_num - 2
- eos_idx = self.char_num - 1
- b, t, c = inputs.size() #b,25,512
- inputs = inputs.view(-1, c)
- cls_res = self.cls_op(inputs) #b,25,n_class
- word_pred_PVAM = F.softmax(cls_res, dim=-1).argmax(-1)
- word_pred_PVAM = word_pred_PVAM.view(-1, t, 1)
- #b 25 1
- word1 = F.pad(word_pred_PVAM, [0, 0, 1, 0], 'constant', value=bos_idx)
- word_forward = word1[:, :-1, :].squeeze(-1)
- word_backward = word_pred_PVAM.squeeze(-1)
- #mask
- attn_mask_forward = torch.triu(
- torch.full((self.max_len, self.max_len),
- dtype=torch.float32,
- fill_value=-torch.inf),
- diagonal=1,
- ).to(inputs.device)
- attn_mask_forward = attn_mask_forward.unsqueeze(0).expand(
- self.num_heads, -1, -1)
- attn_mask_backward = torch.tril(
- torch.full((self.max_len, self.max_len),
- dtype=torch.float32,
- fill_value=-torch.inf),
- diagonal=-1,
- ).to(inputs.device)
- attn_mask_backward = attn_mask_backward.unsqueeze(0).expand(
- self.num_heads, -1, -1)
- #B,25
- pos = torch.arange(self.max_len, dtype=torch.long).to(inputs.device)
- pos = pos.unsqueeze(0).expand(b, -1) #b,25
- word_front_mix = self._pos_emb(word_forward, pos, self.dropout_rate)
- word_backward_mix = self._pos_emb(word_backward, pos,
- self.dropout_rate)
- # b 25 emb_dim
- for attn_layer in self.forward_self_attn:
- word_front_mix = attn_layer(word_front_mix,
- self_mask=attn_mask_forward)
- for attn_layer in self.backward_self_attn:
- word_backward_mix = attn_layer(word_backward_mix,
- self_mask=attn_mask_backward)
- #b,25,emb_dim
- eos_emd = self.word_emb(torch.full(
- (1, ), eos_idx).to(inputs.device)).expand(b, 1, -1)
- word_backward_mix = torch.cat((word_backward_mix, eos_emd), dim=1)
- word_backward_mix = word_backward_mix[:, 1:, ]
- gsrm_features = word_front_mix + word_backward_mix
- gsrm_out = self.cls_final(gsrm_features)
- # torch.matmul(gsrm_features,
- # self.word_emb.embedding.weight.permute(1, 0))
- b, t, c = gsrm_out.size()
- #b,25,n_class
- gsrm_out = gsrm_out.view(-1, c).contiguous()
- return gsrm_features, cls_res, gsrm_out
- class VSFD(nn.Module):
- def __init__(self, in_channels, out_channels):
- super(VSFD, self).__init__()
- self.char_num = out_channels
- self.fc0 = nn.Linear(in_channels * 2, in_channels)
- self.fc1 = nn.Linear(in_channels, self.char_num)
- def forward(self, pvam_feature, gsrm_feature):
- _, t, c1 = pvam_feature.size()
- _, t, c2 = gsrm_feature.size()
- combine_featurs = torch.cat([pvam_feature, gsrm_feature], dim=-1)
- combine_featurs = combine_featurs.view(-1, c1 + c2).contiguous()
- atten = self.fc0(combine_featurs)
- atten = torch.sigmoid(atten)
- atten = atten.view(-1, t, c1)
- combine_featurs = atten * pvam_feature + (1 - atten) * gsrm_feature
- combine_featurs = combine_featurs.view(-1, c1).contiguous()
- out = self.fc1(combine_featurs)
- return out
- class SRNDecoder(nn.Module):
- def __init__(self,
- in_channels,
- out_channels,
- hidden_dims,
- num_decoder_layers=4,
- max_text_length=25,
- num_heads=8,
- **kwargs):
- super(SRNDecoder, self).__init__()
- self.max_text_length = max_text_length
- self.num_heads = num_heads
- self.pvam = PVAM(in_channels=in_channels,
- char_num=out_channels,
- max_text_length=max_text_length,
- num_heads=num_heads,
- hidden_dims=hidden_dims,
- dropout_rate=0.1)
- self.gsrm = GSRM(in_channel=in_channels,
- char_num=out_channels,
- max_len=max_text_length,
- num_heads=num_heads,
- num_layers=num_decoder_layers,
- hidden_dims=hidden_dims)
- self.vsfd = VSFD(in_channels=in_channels, out_channels=out_channels)
- def forward(self, feat, data=None):
- # feat [B,512,8,32]
- pvam_feature = self.pvam(feat)
- gsrm_features, pvam_preds, gsrm_preds = self.gsrm(pvam_feature)
- vsfd_preds = self.vsfd(pvam_feature, gsrm_features)
- if not self.training:
- preds = F.softmax(vsfd_preds, dim=-1)
- return preds
- return [pvam_preds, gsrm_preds, vsfd_preds]
|