sar_decoder.py 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236
  1. import math
  2. import torch
  3. import torch.nn as nn
  4. import torch.nn.functional as F
  5. class SAREncoder(nn.Module):
  6. def __init__(self,
  7. enc_bi_rnn=False,
  8. enc_drop_rnn=0.1,
  9. in_channels=512,
  10. d_enc=512,
  11. **kwargs):
  12. super().__init__()
  13. # LSTM Encoder
  14. if enc_bi_rnn:
  15. bidirectional = True
  16. else:
  17. bidirectional = False
  18. hidden_size = d_enc
  19. self.rnn_encoder = nn.LSTM(input_size=in_channels,
  20. hidden_size=hidden_size,
  21. num_layers=2,
  22. dropout=enc_drop_rnn,
  23. bidirectional=bidirectional,
  24. batch_first=True)
  25. # global feature transformation
  26. encoder_rnn_out_size = hidden_size * (int(enc_bi_rnn) + 1)
  27. self.linear = nn.Linear(encoder_rnn_out_size, encoder_rnn_out_size)
  28. def forward(self, feat):
  29. h_feat = feat.shape[2]
  30. feat_v = F.max_pool2d(feat,
  31. kernel_size=(h_feat, 1),
  32. stride=1,
  33. padding=0)
  34. feat_v = feat_v.squeeze(2)
  35. feat_v = feat_v.permute(0, 2, 1).contiguous() # bsz * W * C
  36. holistic_feat = self.rnn_encoder(feat_v)[0] # bsz * T * hidden_size
  37. valid_hf = holistic_feat[:, -1, :] # bsz * hidden_size
  38. holistic_feat = self.linear(valid_hf) # bsz * C
  39. return holistic_feat
  40. class SARDecoder(nn.Module):
  41. def __init__(self,
  42. in_channels,
  43. out_channels,
  44. max_len=25,
  45. enc_bi_rnn=False,
  46. enc_drop_rnn=0.1,
  47. dec_bi_rnn=False,
  48. dec_drop_rnn=0.0,
  49. pred_dropout=0.1,
  50. pred_concat=True,
  51. mask=True,
  52. use_lstm=True,
  53. **kwargs):
  54. super(SARDecoder, self).__init__()
  55. self.num_classes = out_channels
  56. self.start_idx = out_channels - 2
  57. self.padding_idx = out_channels - 1
  58. self.end_idx = 0
  59. self.max_seq_len = max_len + 1
  60. self.pred_concat = pred_concat
  61. self.mask = mask
  62. enc_dim = in_channels
  63. d = in_channels
  64. embedding_dim = in_channels
  65. dec_dim = in_channels
  66. self.use_lstm = use_lstm
  67. if use_lstm:
  68. # encoder module
  69. self.encoder = SAREncoder(enc_bi_rnn=enc_bi_rnn,
  70. enc_drop_rnn=enc_drop_rnn,
  71. in_channels=in_channels,
  72. d_enc=enc_dim)
  73. # decoder module
  74. # 2D attention layer
  75. self.conv1x1_1 = nn.Linear(dec_dim, d)
  76. self.conv3x3_1 = nn.Conv2d(in_channels,
  77. d,
  78. kernel_size=3,
  79. stride=1,
  80. padding=1)
  81. self.conv1x1_2 = nn.Linear(d, 1)
  82. # Decoder input embedding
  83. self.embedding = nn.Embedding(self.num_classes,
  84. embedding_dim,
  85. padding_idx=self.padding_idx)
  86. self.rnndecoder = nn.LSTM(input_size=embedding_dim,
  87. hidden_size=dec_dim,
  88. num_layers=2,
  89. dropout=dec_drop_rnn,
  90. bidirectional=dec_bi_rnn,
  91. batch_first=True)
  92. # Prediction layer
  93. self.pred_dropout = nn.Dropout(pred_dropout)
  94. if pred_concat:
  95. fc_in_channel = in_channels + in_channels + dec_dim
  96. else:
  97. fc_in_channel = in_channels
  98. self.prediction = nn.Linear(fc_in_channel, self.num_classes)
  99. self.softmax = nn.Softmax(dim=-1)
  100. def _2d_attation(self, feat, tokens, data, training):
  101. Hidden_state = self.rnndecoder(tokens)[0]
  102. attn_query = self.conv1x1_1(Hidden_state)
  103. bsz, seq_len, _ = attn_query.size()
  104. attn_query = attn_query.unsqueeze(-1).unsqueeze(-1)
  105. # bsz * seq_len+1 * attn_size * 1 * 1
  106. attn_key = self.conv3x3_1(feat).unsqueeze(1)
  107. # bsz * 1 * attn_size * h * w
  108. attn_weight = torch.tanh(torch.add(attn_key, attn_query, alpha=1))
  109. attn_weight = attn_weight.permute(0, 1, 3, 4, 2).contiguous()
  110. attn_weight = self.conv1x1_2(attn_weight)
  111. _, T, h, w, c = attn_weight.size()
  112. if self.mask:
  113. valid_ratios = data[-1]
  114. # cal mask of attention weight
  115. attn_mask = torch.zeros_like(attn_weight)
  116. for i, valid_ratio in enumerate(valid_ratios):
  117. valid_width = min(w, math.ceil(w * valid_ratio))
  118. attn_mask[i, :, :, valid_width:, :] = 1
  119. attn_weight = attn_weight.masked_fill(attn_mask.bool(),
  120. float('-inf'))
  121. attn_weight = attn_weight.view(bsz, T, -1)
  122. attn_weight = F.softmax(attn_weight, dim=-1)
  123. attn_weight = attn_weight.view(bsz, T, h, w,
  124. c).permute(0, 1, 4, 2, 3).contiguous()
  125. # bsz, T, 1, h, w
  126. # bsz, 1, f_c ,h, w
  127. attn_feat = torch.sum(torch.mul(feat.unsqueeze(1), attn_weight),
  128. (3, 4),
  129. keepdim=False)
  130. return [Hidden_state, attn_feat]
  131. def forward_train(self, feat, holistic_feat, data):
  132. max_len = data[1].max()
  133. label = data[0][:, :1 + max_len] # label
  134. label_embedding = self.embedding(label)
  135. holistic_feat = holistic_feat.unsqueeze(1)
  136. tokens = torch.cat((holistic_feat, label_embedding), dim=1)
  137. Hidden_state, attn_feat = self._2d_attation(feat,
  138. tokens,
  139. data,
  140. training=self.training)
  141. bsz, seq_len, f_c = Hidden_state.size()
  142. # linear transformation
  143. if self.pred_concat:
  144. f_c = holistic_feat.size(-1)
  145. holistic_feat = holistic_feat.expand(bsz, seq_len, f_c)
  146. preds = self.prediction(
  147. torch.cat((Hidden_state, attn_feat, holistic_feat), 2))
  148. else:
  149. preds = self.prediction(attn_feat)
  150. # bsz * (seq_len + 1) * num_classes
  151. preds = self.pred_dropout(preds)
  152. return preds[:, 1:, :]
  153. def forward_test(self, feat, holistic_feat, data=None):
  154. bsz = feat.shape[0]
  155. seq_len = self.max_seq_len
  156. holistic_feat = holistic_feat.unsqueeze(1)
  157. tokens = torch.full((bsz, ),
  158. self.start_idx,
  159. device=feat.device,
  160. dtype=torch.long)
  161. outputs = []
  162. tokens = self.embedding(tokens)
  163. tokens = tokens.unsqueeze(1).expand(-1, seq_len, -1)
  164. tokens = torch.cat((holistic_feat, tokens), dim=1)
  165. for i in range(1, seq_len + 1):
  166. Hidden_state, attn_feat = self._2d_attation(feat,
  167. tokens,
  168. data=data,
  169. training=self.training)
  170. if self.pred_concat:
  171. f_c = holistic_feat.size(-1)
  172. holistic_feat = holistic_feat.expand(bsz, seq_len + 1, f_c)
  173. preds = self.prediction(
  174. torch.cat((Hidden_state, attn_feat, holistic_feat), 2))
  175. else:
  176. preds = self.prediction(attn_feat)
  177. # bsz * (seq_len + 1) * num_classes
  178. char_output = preds[:, i, :]
  179. char_output = F.softmax(char_output, -1)
  180. outputs.append(char_output)
  181. _, max_idx = torch.max(char_output, dim=1, keepdim=False)
  182. char_embedding = self.embedding(max_idx)
  183. if (i < seq_len):
  184. tokens[:, i + 1, :] = char_embedding
  185. if (tokens == self.end_idx).any(dim=-1).all():
  186. break
  187. outputs = torch.stack(outputs, 1)
  188. return outputs
  189. def forward(self, feat, data=None):
  190. if self.use_lstm:
  191. holistic_feat = self.encoder(feat) # bsz c
  192. else:
  193. holistic_feat = F.adaptive_avg_pool2d(feat, (1, 1)).squeeze()
  194. if self.training:
  195. preds = self.forward_train(feat, holistic_feat, data=data)
  196. else:
  197. preds = self.forward_test(feat, holistic_feat, data=data)
  198. # (bsz, seq_len, num_classes)
  199. return preds