12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from torch.nn.init import trunc_normal_
- from openrec.modeling.common import Block
- class RCTCDecoder(nn.Module):
- def __init__(self,
- in_channels,
- out_channels=6625,
- return_feats=False,
- **kwargs):
- super(RCTCDecoder, self).__init__()
- self.char_token = nn.Parameter(
- torch.zeros([1, 1, in_channels], dtype=torch.float32),
- requires_grad=True,
- )
- trunc_normal_(self.char_token, mean=0, std=0.02)
- self.fc = nn.Linear(
- in_channels,
- out_channels,
- bias=True,
- )
- self.fc_kv = nn.Linear(
- in_channels,
- 2 * in_channels,
- bias=True,
- )
- self.w_atten_block = Block(dim=in_channels,
- num_heads=in_channels // 32,
- mlp_ratio=4.0,
- qkv_bias=False)
- self.out_channels = out_channels
- self.return_feats = return_feats
- def forward(self, x, data=None):
- B, C, H, W = x.shape
- x = self.w_atten_block(x.permute(0, 2, 3,
- 1).reshape(-1, W, C)).reshape(
- B, H, W, C).permute(0, 3, 1, 2)
- # B, D, 8, 32
- x_kv = self.fc_kv(x.flatten(2).transpose(1, 2)).reshape(
- B, H * W, 2, C).permute(2, 0, 3, 1) # 2, b, c, hw
- x_k, x_v = x_kv.unbind(0) # b, c, hw
- char_token = self.char_token.tile([B, 1, 1])
- attn_ctc2d = char_token @ x_k # b, 1, hw
- attn_ctc2d = attn_ctc2d.reshape([-1, 1, H, W])
- attn_ctc2d = F.softmax(attn_ctc2d, 2) # b, 1, h, w
- attn_ctc2d = attn_ctc2d.permute(0, 3, 1, 2) # b, w, 1, h
- x_v = x_v.reshape(B, C, H, W)
- # B, W, H, C
- feats = attn_ctc2d @ x_v.permute(0, 3, 2, 1) # b, w, 1, c
- feats = feats.squeeze(2) # b, w, c
- predicts = self.fc(feats)
- if self.return_feats:
- result = (feats, predicts)
- else:
- result = predicts
- if not self.training:
- predicts = F.softmax(predicts, dim=2)
- result = predicts
- return result
|