123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from openrec.modeling.encoders.svtrnet import (
- Block,
- ConvBNLayer,
- kaiming_normal_,
- trunc_normal_,
- zeros_,
- ones_,
- )
- class Swish(nn.Module):
- def __init__(self):
- super().__init__()
- def forward(self, x):
- return x * F.sigmoid(x)
- class EncoderWithSVTR(nn.Module):
- def __init__(
- self,
- in_channels,
- dims=64, # XS
- depth=2,
- hidden_dims=120,
- use_guide=False,
- num_heads=8,
- qkv_bias=True,
- mlp_ratio=2.0,
- drop_rate=0.1,
- attn_drop_rate=0.1,
- drop_path=0.0,
- kernel_size=[3, 3],
- qk_scale=None,
- use_pool=True,
- ):
- super(EncoderWithSVTR, self).__init__()
- self.depth = depth
- self.use_guide = use_guide
- self.use_pool = use_pool
- self.conv1 = ConvBNLayer(
- in_channels,
- in_channels // 8,
- kernel_size=kernel_size,
- padding=[kernel_size[0] // 2, kernel_size[1] // 2],
- act=Swish,
- bias=False)
- self.conv2 = ConvBNLayer(in_channels // 8,
- hidden_dims,
- kernel_size=1,
- act=Swish,
- bias=False)
- self.svtr_block = nn.ModuleList([
- Block(
- dim=hidden_dims,
- num_heads=num_heads,
- mixer='Global',
- HW=None,
- mlp_ratio=mlp_ratio,
- qkv_bias=qkv_bias,
- qk_scale=qk_scale,
- drop=drop_rate,
- act_layer=Swish,
- attn_drop=attn_drop_rate,
- drop_path=drop_path,
- norm_layer='nn.LayerNorm',
- eps=1e-05,
- prenorm=False,
- ) for i in range(depth)
- ])
- self.norm = nn.LayerNorm(hidden_dims, eps=1e-6)
- self.conv3 = ConvBNLayer(hidden_dims,
- in_channels,
- kernel_size=1,
- act=Swish,
- bias=False)
- # last conv-nxn, the input is concat of input tensor and conv3 output tensor
- self.conv4 = ConvBNLayer(
- 2 * in_channels,
- in_channels // 8,
- kernel_size=kernel_size,
- padding=[kernel_size[0] // 2, kernel_size[1] // 2],
- act=Swish,
- bias=False)
- self.conv1x1 = ConvBNLayer(in_channels // 8,
- dims,
- kernel_size=1,
- act=Swish,
- bias=False)
- self.out_channels = dims
- self.apply(self._init_weights)
- def _init_weights(self, m):
- if isinstance(m, nn.Linear):
- trunc_normal_(m.weight, mean=0, std=0.02)
- if isinstance(m, nn.Linear) and m.bias is not None:
- zeros_(m.bias)
- if isinstance(m, nn.LayerNorm):
- zeros_(m.bias)
- ones_(m.weight)
- if isinstance(m, nn.Conv2d):
- kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
- def pool_h_2(self, x):
- # x: B, C, H, W
- x = x.mean(dim=2, keepdim=True)
- x = F.avg_pool2d(x, kernel_size=(1, 2))
- return x # B, C, 1, W//2
- def forward(self, x):
- if self.use_pool:
- x = self.pool_h_2(x)
- # for use guide
- if self.use_guide:
- z = x.detach()
- else:
- z = x
- # for short cut
- h = z
- # reduce dim
- z = self.conv1(z)
- z = self.conv2(z)
- # SVTR global block
- B, C, H, W = z.shape
- z = z.flatten(2).transpose(1, 2).contiguous()
- for blk in self.svtr_block:
- z = blk(z)
- z = self.norm(z)
- # last stage
- z = z.reshape(-1, H, W, C).permute(0, 3, 1, 2)
- z = self.conv3(z)
- z = torch.concat((h, z), dim=1)
- z = self.conv1x1(self.conv4(z))
- return z
- class CTCDecoder(nn.Module):
- def __init__(self,
- in_channels,
- out_channels=6625,
- mid_channels=None,
- return_feats=False,
- svtr_encoder=None,
- **kwargs):
- super(CTCDecoder, self).__init__()
- if svtr_encoder is not None:
- svtr_encoder['in_channels'] = in_channels
- self.svtr_encoder = EncoderWithSVTR(**svtr_encoder)
- in_channels = self.svtr_encoder.out_channels
- else:
- self.svtr_encoder = None
- if mid_channels is None:
- self.fc = nn.Linear(
- in_channels,
- out_channels,
- )
- else:
- self.fc1 = nn.Linear(
- in_channels,
- mid_channels,
- )
- self.fc2 = nn.Linear(
- mid_channels,
- out_channels,
- )
- self.out_channels = out_channels
- self.mid_channels = mid_channels
- self.return_feats = return_feats
- def forward(self, x, data=None):
- if self.svtr_encoder is not None:
- x = self.svtr_encoder(x)
- x = x.flatten(2).transpose(1, 2)
- if self.mid_channels is None:
- predicts = self.fc(x)
- else:
- x = self.fc1(x)
- predicts = self.fc2(x)
- if self.return_feats:
- result = (x, predicts)
- else:
- result = predicts
- if not self.training:
- predicts = F.softmax(predicts, dim=2)
- result = predicts
- return result
|