123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from openrec.modeling.decoders.nrtr_decoder import PositionalEncoding, TransformerBlock
- class BCNLanguage(nn.Module):
- def __init__(
- self,
- d_model=512,
- nhead=8,
- num_layers=4,
- dim_feedforward=2048,
- dropout=0.0,
- max_length=25,
- detach=True,
- num_classes=37,
- ):
- super().__init__()
- self.d_model = d_model
- self.detach = detach
- self.max_length = max_length + 1
- self.proj = nn.Linear(num_classes, d_model, False)
- self.token_encoder = PositionalEncoding(dropout=0.1,
- dim=d_model,
- max_len=self.max_length)
- self.pos_encoder = PositionalEncoding(dropout=0,
- dim=d_model,
- max_len=self.max_length)
- self.decoder = nn.ModuleList([
- TransformerBlock(
- d_model=d_model,
- nhead=nhead,
- dim_feedforward=dim_feedforward,
- attention_dropout_rate=dropout,
- residual_dropout_rate=dropout,
- with_self_attn=False,
- with_cross_attn=True,
- ) for i in range(num_layers)
- ])
- self.cls = nn.Linear(d_model, num_classes)
- def forward(self, tokens, lengths):
- """
- Args:
- tokens: (N, T, C) where T is length, N is batch size and C is classes number
- lengths: (N,)
- """
- if self.detach:
- tokens = tokens.detach()
- embed = self.proj(tokens) # (N, T, E)
- embed = self.token_encoder(embed) # (N, T, E)
- mask = _get_mask(lengths, self.max_length) # (N, 1, T, T)
- zeros = embed.new_zeros(*embed.shape)
- qeury = self.pos_encoder(zeros)
- for decoder_layer in self.decoder:
- qeury = decoder_layer(qeury, embed, cross_mask=mask)
- output = qeury # (N, T, E)
- logits = self.cls(output) # (N, T, C)
- return output, logits
- def encoder_layer(in_c, out_c, k=3, s=2, p=1):
- return nn.Sequential(nn.Conv2d(in_c, out_c, k, s, p),
- nn.BatchNorm2d(out_c), nn.ReLU(True))
- class DecoderUpsample(nn.Module):
- def __init__(self, in_c, out_c, k=3, s=1, p=1, mode='nearest') -> None:
- super().__init__()
- self.align_corners = None if mode == 'nearest' else True
- self.mode = mode
- # nn.Upsample(size=size, scale_factor=scale_factor, mode=mode, align_corners=align_corners),
- self.w = nn.Sequential(
- nn.Conv2d(in_c, out_c, k, s, p),
- nn.BatchNorm2d(out_c),
- nn.ReLU(True),
- )
- def forward(self, x, size):
- x = F.interpolate(x,
- size=size,
- mode=self.mode,
- align_corners=self.align_corners)
- return self.w(x)
- class PositionAttention(nn.Module):
- def __init__(self,
- max_length,
- in_channels=512,
- num_channels=64,
- mode='nearest',
- **kwargs):
- super().__init__()
- self.max_length = max_length
- self.k_encoder = nn.Sequential(
- encoder_layer(in_channels, num_channels, s=(1, 2)),
- encoder_layer(num_channels, num_channels, s=(2, 2)),
- encoder_layer(num_channels, num_channels, s=(2, 2)),
- encoder_layer(num_channels, num_channels, s=(2, 2)),
- )
- self.k_decoder = nn.ModuleList([
- DecoderUpsample(num_channels, num_channels, mode=mode),
- DecoderUpsample(num_channels, num_channels, mode=mode),
- DecoderUpsample(num_channels, num_channels, mode=mode),
- DecoderUpsample(num_channels, in_channels, mode=mode),
- ])
- self.pos_encoder = PositionalEncoding(dropout=0,
- dim=in_channels,
- max_len=max_length)
- self.project = nn.Linear(in_channels, in_channels)
- def forward(self, x, query=None):
- N, E, H, W = x.size()
- k, v = x, x # (N, E, H, W)
- # calculate key vector
- features = []
- size_decoder = []
- for i in range(0, len(self.k_encoder)):
- size_decoder.append(k.shape[2:])
- k = self.k_encoder[i](k)
- features.append(k)
- for i in range(0, len(self.k_decoder) - 1):
- k = self.k_decoder[i](k, size=size_decoder[-(i + 1)])
- k = k + features[len(self.k_decoder) - 2 - i]
- k = self.k_decoder[-1](k, size=size_decoder[0]) # (N, E, H, W)
- # calculate query vector
- # TODO q=f(q,k)
- zeros = x.new_zeros(
- (N, self.max_length, E)) if query is None else query # (N, T, E)
- q = self.pos_encoder(zeros) # (N, T, E)
- q = self.project(q) # (N, T, E)
- # calculate attention
- attn_scores = torch.bmm(q, k.flatten(2, 3)) # (N, T, (H*W))
- attn_scores = attn_scores / (E**0.5)
- attn_scores = F.softmax(attn_scores, dim=-1)
- # (N, E, H, W) -> (N, H, W, E) -> (N, (H*W), E)
- v = v.permute(0, 2, 3, 1).view(N, -1, E) # (N, (H*W), E)
- attn_vecs = torch.bmm(attn_scores, v) # (N, T, E)
- return attn_vecs, attn_scores.view(N, -1, H, W)
- class ABINetDecoder(nn.Module):
- def __init__(self,
- in_channels,
- out_channels,
- nhead=8,
- num_layers=3,
- dim_feedforward=2048,
- dropout=0.1,
- max_length=25,
- iter_size=3,
- **kwargs):
- super().__init__()
- self.max_length = max_length + 1
- d_model = in_channels
- self.pos_encoder = PositionalEncoding(dropout=0.1, dim=d_model)
- self.encoder = nn.ModuleList([
- TransformerBlock(
- d_model=d_model,
- nhead=nhead,
- dim_feedforward=dim_feedforward,
- attention_dropout_rate=dropout,
- residual_dropout_rate=dropout,
- with_self_attn=True,
- with_cross_attn=False,
- ) for _ in range(num_layers)
- ])
- self.decoder = PositionAttention(
- max_length=self.max_length, # additional stop token
- in_channels=d_model,
- num_channels=d_model // 8,
- mode='nearest',
- )
- self.out_channels = out_channels
- self.cls = nn.Linear(d_model, self.out_channels)
- self.iter_size = iter_size
- if iter_size > 0:
- self.language = BCNLanguage(
- d_model=d_model,
- nhead=nhead,
- num_layers=4,
- dim_feedforward=dim_feedforward,
- dropout=dropout,
- max_length=max_length,
- num_classes=self.out_channels,
- )
- # alignment
- self.w_att_align = nn.Linear(2 * d_model, d_model)
- self.cls_align = nn.Linear(d_model, self.out_channels)
- def forward(self, x, data=None):
- # bs, c, h, w
- x = x.permute([0, 2, 3, 1]) # bs, h, w, c
- _, H, W, C = x.shape
- # assert H % 8 == 0 and W % 16 == 0, 'The height and width should be multiples of 8 and 16.'
- feature = x.flatten(1, 2) # bs, h*w, c
- feature = self.pos_encoder(feature) # bs, h*w, c
- for encoder_layer in self.encoder:
- feature = encoder_layer(feature)
- # bs, h*w, c
- feature = feature.reshape([-1, H, W, C]).permute(0, 3, 1,
- 2) # bs, c, h, w
- v_feature, _ = self.decoder(feature) # (bs[N], T, E)
- vis_logits = self.cls(v_feature) # (bs[N], T, E)
- align_lengths = _get_length(vis_logits)
- align_logits = vis_logits
- all_l_res, all_a_res = [], []
- for _ in range(self.iter_size):
- tokens = F.softmax(align_logits, dim=-1)
- lengths = torch.clamp(
- align_lengths, 2,
- self.max_length) # TODO: move to language model
- l_feature, l_logits = self.language(tokens, lengths)
- # alignment
- all_l_res.append(l_logits)
- fuse = torch.cat((l_feature, v_feature), -1)
- f_att = torch.sigmoid(self.w_att_align(fuse))
- output = f_att * v_feature + (1 - f_att) * l_feature
- align_logits = self.cls_align(output)
- align_lengths = _get_length(align_logits)
- all_a_res.append(align_logits)
- if self.training:
- return {
- 'align': all_a_res,
- 'lang': all_l_res,
- 'vision': vis_logits
- }
- else:
- return F.softmax(align_logits, -1)
- def _get_length(logit):
- """Greed decoder to obtain length from logit."""
- out = logit.argmax(dim=-1) == 0
- non_zero_mask = out.int() != 0
- mask_max_values, mask_max_indices = torch.max(non_zero_mask.int(), dim=-1)
- mask_max_indices[mask_max_values == 0] = -1
- out = mask_max_indices + 1
- return out
- def _get_mask(length, max_length):
- """Generate a square mask for the sequence.
- The masked positions are filled with float('-inf'). Unmasked positions are
- filled with float(0.0).
- """
- length = length.unsqueeze(-1)
- N = length.size(0)
- grid = torch.arange(0, max_length, device=length.device).unsqueeze(0)
- zero_mask = torch.zeros([N, max_length],
- dtype=torch.float32,
- device=length.device)
- inf_mask = torch.full([N, max_length],
- float('-inf'),
- dtype=torch.float32,
- device=length.device)
- diag_mask = torch.diag(
- torch.full([max_length],
- float('-inf'),
- dtype=torch.float32,
- device=length.device),
- diagonal=0,
- )
- mask = torch.where(grid >= length, inf_mask, zero_mask)
- mask = mask.unsqueeze(1) + diag_mask
- return mask.unsqueeze(1)
|