12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758 |
- import torch
- import torch.nn.functional as F
- from torch import nn
- def flatten_label(target):
- label_flatten = []
- label_length = []
- for i in range(0, target.size()[0]):
- cur_label = target[i].tolist()
- label_flatten += cur_label[:cur_label.index(0) + 1]
- label_length.append(cur_label.index(0) + 1)
- label_flatten = torch.LongTensor(label_flatten)
- label_length = torch.IntTensor(label_length)
- return (label_flatten, label_length)
- def _flatten(sources, lengths):
- return torch.cat([t[:l] for t, l in zip(sources, lengths)])
- class VisionLANLoss(nn.Module):
- def __init__(self,
- training_step='LA',
- ratio_res=0.5,
- ratio_sub=0.5,
- **kwargs):
- super(VisionLANLoss, self).__init__()
- self.loss_func = nn.CrossEntropyLoss(reduction='mean')
- self.ratio_res = ratio_res
- self.ratio_sub = ratio_sub
- assert training_step in ['LF_1', 'LF_2', 'LA']
- self.training_step = training_step
- def forward(self, pred, batch):
- text_pre, text_rem, text_mas, _ = pred
- target = batch[1].to(dtype=torch.int64)
- label_flatten, length = flatten_label(target)
- text_pre = _flatten(text_pre, length)
- if self.training_step == 'LF_1':
- loss = self.loss_func(text_pre, label_flatten.to(text_pre.device))
- else:
- target_res = batch[2].to(dtype=torch.int64)
- target_sub = batch[3].to(dtype=torch.int64)
- label_flatten_res, length_res = flatten_label(target_res)
- label_flatten_sub, length_sub = flatten_label(target_sub)
- text_rem = _flatten(text_rem, length_res)
- text_mas = _flatten(text_mas, length_sub)
- loss_ori = self.loss_func(text_pre,
- label_flatten.to(text_pre.device))
- loss_res = self.loss_func(text_rem,
- label_flatten_res.to(text_rem.device))
- loss_mas = self.loss_func(text_mas,
- label_flatten_sub.to(text_mas.device))
- loss = loss_ori + loss_res * self.ratio_res + loss_mas * self.ratio_sub
- return {'loss': loss}
|