1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192 |
- Global:
- device: gpu
- epoch_num: 20
- log_smooth_window: 20
- print_batch_step: 10
- output_dir: ./output/rec/u14m_filter/resnet31_lstm_moran
- eval_epoch_step: [0, 1]
- eval_batch_step: [0, 500]
- cal_metric_during_train: True
- pretrained_model:
- checkpoints:
- use_tensorboard: false
- infer_img:
- # for data or label process
- character_dict_path: ./tools/utils/EN_symbol_dict.txt
- max_text_length: 25
- use_space_char: False
- save_res_path: ./output/rec/predicts_moran.txt
- use_amp: True
- grad_clip_val: 1.0
- Optimizer:
- name: Adam
- lr: 0.002 # for 1gpus bs1024/gpu
- weight_decay: 0.05
- filter_bias_and_bn: False
- LRScheduler:
- name: OneCycleLR
- warmup_epoch: 1.5 # pct_start 0.075*20 = 1.5ep
- cycle_momentum: False
- Architecture:
- model_type: rec
- algorithm: MORAN
- Transform:
- name: MORN
- target_shape: [32, 128]
- Encoder:
- name: ResNet_ASTER
- Decoder:
- name: ASTERDecoder
- Loss:
- name: ARLoss
- Metric:
- name: RecMetric
- main_indicator: acc
- is_filter: True
- PostProcess:
- name: ARLabelDecode
- Train:
- dataset:
- name: LMDBDataSet
- data_dir: ../Union14M-L-LMDB-Filtered
- transforms:
- - DecodeImagePIL: # load image
- img_mode: RGB
- - PARSeqAugPIL:
- - ARLabelEncode: # Class handling label
- - RecTVResize:
- image_shape: [64, 256]
- padding: False
- - KeepKeys:
- keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
- loader:
- shuffle: True
- batch_size_per_card: 1024
- drop_last: True
- num_workers: 4
- Eval:
- dataset:
- name: LMDBDataSet
- data_dir: ../evaluation
- transforms:
- - DecodeImagePIL: # load image
- img_mode: RGB
- - ARLabelEncode: # Class handling label
- - RecTVResize:
- image_shape: [64, 256]
- padding: False
- - KeepKeys:
- keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
- loader:
- shuffle: False
- drop_last: False
- batch_size_per_card: 256
- num_workers: 2
|