123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165 |
- import logging
- import os
- import cv2
- import numpy as np
- import importlib.util
- import sys
- import subprocess
- def get_check_global_params(mode):
- check_params = [
- "use_gpu",
- "max_text_length",
- "image_shape",
- "image_shape",
- "character_type",
- "loss_type",
- ]
- if mode == "train_eval":
- check_params = check_params + [
- "train_batch_size_per_card",
- "test_batch_size_per_card",
- ]
- elif mode == "test":
- check_params = check_params + ["test_batch_size_per_card"]
- return check_params
- def _check_image_file(path):
- img_end = {"jpg", "bmp", "png", "jpeg", "rgb", "tif", "tiff", "gif", "pdf"}
- return any([path.lower().endswith(e) for e in img_end])
- def get_image_file_list(img_file):
- imgs_lists = []
- if img_file is None or not os.path.exists(img_file):
- raise Exception("not found any img file in {}".format(img_file))
- if os.path.isfile(img_file) and _check_image_file(img_file):
- imgs_lists.append(img_file)
- elif os.path.isdir(img_file):
- for single_file in os.listdir(img_file):
- file_path = os.path.join(img_file, single_file)
- if os.path.isfile(file_path) and _check_image_file(file_path):
- imgs_lists.append(file_path)
- if len(imgs_lists) == 0:
- raise Exception("not found any img file in {}".format(img_file))
- imgs_lists = sorted(imgs_lists)
- return imgs_lists
- def binarize_img(img):
- if len(img.shape) == 3 and img.shape[2] == 3:
- gray = cv2.cvtColor(img,
- cv2.COLOR_BGR2GRAY) # conversion to grayscale image
- # use cv2 threshold binarization
- _, gray = cv2.threshold(gray, 0, 255,
- cv2.THRESH_BINARY + cv2.THRESH_OTSU)
- img = cv2.cvtColor(gray, cv2.COLOR_GRAY2BGR)
- return img
- def alpha_to_color(img, alpha_color=(255, 255, 255)):
- if len(img.shape) == 3 and img.shape[2] == 4:
- B, G, R, A = cv2.split(img)
- alpha = A / 255
- R = (alpha_color[0] * (1 - alpha) + R * alpha).astype(np.uint8)
- G = (alpha_color[1] * (1 - alpha) + G * alpha).astype(np.uint8)
- B = (alpha_color[2] * (1 - alpha) + B * alpha).astype(np.uint8)
- img = cv2.merge((B, G, R))
- return img
- def check_and_read(img_path):
- if os.path.basename(img_path)[-3:].lower() == "gif":
- gif = cv2.VideoCapture(img_path)
- ret, frame = gif.read()
- if not ret:
- logger = logging.getLogger("openrec")
- logger.info("Cannot read {}. This gif image maybe corrupted.")
- return None, False
- if len(frame.shape) == 2 or frame.shape[-1] == 1:
- frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
- imgvalue = frame[:, :, ::-1]
- return imgvalue, True, False
- elif os.path.basename(img_path)[-3:].lower() == "pdf":
- import fitz
- from PIL import Image
- imgs = []
- with fitz.open(img_path) as pdf:
- for pg in range(0, pdf.page_count):
- page = pdf[pg]
- mat = fitz.Matrix(2, 2)
- pm = page.get_pixmap(matrix=mat, alpha=False)
- # if width or height > 2000 pixels, don't enlarge the image
- if pm.width > 2000 or pm.height > 2000:
- pm = page.get_pixmap(matrix=fitz.Matrix(1, 1), alpha=False)
- img = Image.frombytes("RGB", [pm.width, pm.height], pm.samples)
- img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
- imgs.append(img)
- return imgs, False, True
- return None, False, False
- def load_vqa_bio_label_maps(label_map_path):
- with open(label_map_path, "r", encoding="utf-8") as fin:
- lines = fin.readlines()
- old_lines = [line.strip() for line in lines]
- lines = ["O"]
- for line in old_lines:
- # "O" has already been in lines
- if line.upper() in ["OTHER", "OTHERS", "IGNORE"]:
- continue
- lines.append(line)
- labels = ["O"]
- for line in lines[1:]:
- labels.append("B-" + line)
- labels.append("I-" + line)
- label2id_map = {label.upper(): idx for idx, label in enumerate(labels)}
- id2label_map = {idx: label.upper() for idx, label in enumerate(labels)}
- return label2id_map, id2label_map
- def check_install(module_name, install_name):
- spec = importlib.util.find_spec(module_name)
- if spec is None:
- print(f"Warnning! The {module_name} module is NOT installed")
- print(
- f"Try install {module_name} module automatically. You can also try to install manually by pip install {install_name}."
- )
- python = sys.executable
- try:
- subprocess.check_call(
- [python, "-m", "pip", "install", install_name],
- stdout=subprocess.DEVNULL, )
- print(f"The {module_name} module is now installed")
- except subprocess.CalledProcessError as exc:
- raise Exception(
- f"Install {module_name} failed, please install manually")
- else:
- print(f"{module_name} has been installed.")
- class AverageMeter:
- def __init__(self):
- self.reset()
- def reset(self):
- """reset"""
- self.val = 0
- self.avg = 0
- self.sum = 0
- self.count = 0
- def update(self, val, n=1):
- """update"""
- self.val = val
- self.sum += val * n
- self.count += n
- self.avg = self.sum / self.count
|