123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120 |
- import csv
- import os
- import sys
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- sys.path.append(__dir__)
- sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..')))
- import numpy as np
- from tools.data import build_dataloader
- from tools.engine.config import Config
- from tools.engine.trainer import Trainer
- from tools.utility import ArgsParser
- def parse_args():
- parser = ArgsParser()
- args = parser.parse_args()
- return args
- def main():
- FLAGS = parse_args()
- cfg = Config(FLAGS.config)
- FLAGS = vars(FLAGS)
- opt = FLAGS.pop('opt')
- cfg.merge_dict(FLAGS)
- cfg.merge_dict(opt)
- cfg.cfg['Global']['use_amp'] = False
- if cfg.cfg['Global']['output_dir'][-1] == '/':
- cfg.cfg['Global']['output_dir'] = cfg.cfg['Global']['output_dir'][:-1]
- cfg.cfg['Global']['max_text_length'] = 200
- cfg.cfg['Architecture']['Decoder']['max_len'] = 200
- cfg.cfg['Metric']['name'] = 'RecMetricLong'
- if cfg.cfg['Global']['pretrained_model'] is None:
- cfg.cfg['Global'][
- 'pretrained_model'] = cfg.cfg['Global']['output_dir'] + '/best.pth'
- trainer = Trainer(cfg, mode='eval')
- best_model_dict = trainer.status.get('metrics', {})
- trainer.logger.info('metric in ckpt ***************')
- for k, v in best_model_dict.items():
- trainer.logger.info('{}:{}'.format(k, v))
- data_dirs_list = [
- ['../ltb/long_lmdb'],
- ]
- cfg = cfg.cfg
- file_csv = open(
- cfg['Global']['output_dir'] + '/' +
- cfg['Global']['output_dir'].split('/')[-1] +
- '_result1_1_test_all_long_final_ultra_bs1.csv', 'w')
- csv_w = csv.writer(file_csv)
- for data_dirs in data_dirs_list:
- acc_each = []
- acc_each_num = []
- acc_each_dis = []
- each_long = {}
- for datadir in data_dirs:
- config_each = cfg.copy()
- config_each['Eval']['dataset']['data_dir_list'] = [datadir]
- valid_dataloader = build_dataloader(config_each, 'Eval',
- trainer.logger)
- trainer.logger.info(
- f'{datadir} valid dataloader has {len(valid_dataloader)} iters'
- )
- trainer.valid_dataloader = valid_dataloader
- metric = trainer.eval()
- acc_each.append(metric['acc'] * 100)
- acc_each_dis.append(metric['norm_edit_dis'])
- acc_each_num.append(metric['all_num'])
- trainer.logger.info('metric eval ***************')
- for k, v in metric.items():
- trainer.logger.info('{}:{}'.format(k, v))
- if 'each' in k:
- csv_w.writerow([k] + v[26:])
- each_long[k] = each_long.get(k, []) + [np.array(v[26:])]
- avg1 = np.array(acc_each) * np.array(acc_each_num) / sum(acc_each_num)
- csv_w.writerow(acc_each + [avg1.sum().tolist()] +
- [sum(acc_each) / len(acc_each)])
- print(acc_each + [avg1.sum().tolist()] +
- [sum(acc_each) / len(acc_each)])
- avg1 = np.array(acc_each_dis) * np.array(acc_each_num) / sum(
- acc_each_num)
- csv_w.writerow(acc_each_dis + [avg1.sum().tolist()] +
- [sum(acc_each_dis) / len(acc_each)])
- sum_all = np.array(each_long['each_len_num']).sum(0)
- for k, v in each_long.items():
- if k != 'each_len_num':
- v_sum_weight = (np.array(v) *
- np.array(each_long['each_len_num'])).sum(0)
- sum_all_pad = np.where(sum_all == 0, 1., sum_all)
- v_all = v_sum_weight / sum_all_pad
- v_all = np.where(sum_all == 0, 0., v_all)
- csv_w.writerow([k] + v_all.tolist())
- v_26_40 = (v_all[:10] * sum_all[:10]) / sum_all[:10].sum()
- csv_w.writerow([k + '26_35'] + [v_26_40.sum().tolist()] +
- [sum_all[:10].sum().tolist()])
- v_41_55 = (v_all[10:30] *
- sum_all[10:30]) / sum_all[10:30].sum()
- csv_w.writerow([k + '36_55'] + [v_41_55.sum().tolist()] +
- [sum_all[10:30].sum().tolist()])
- v_56_70 = (v_all[30:] * sum_all[30:]) / sum_all[30:].sum()
- csv_w.writerow([k + '56'] + [v_56_70.sum().tolist()] +
- [sum_all[30:].sum().tolist()])
- else:
- csv_w.writerow([k] + sum_all.tolist())
- file_csv.close()
- if __name__ == '__main__':
- main()
|