eval_rec_all_long.py 4.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120
  1. import csv
  2. import os
  3. import sys
  4. __dir__ = os.path.dirname(os.path.abspath(__file__))
  5. sys.path.append(__dir__)
  6. sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..')))
  7. import numpy as np
  8. from tools.data import build_dataloader
  9. from tools.engine.config import Config
  10. from tools.engine.trainer import Trainer
  11. from tools.utility import ArgsParser
  12. def parse_args():
  13. parser = ArgsParser()
  14. args = parser.parse_args()
  15. return args
  16. def main():
  17. FLAGS = parse_args()
  18. cfg = Config(FLAGS.config)
  19. FLAGS = vars(FLAGS)
  20. opt = FLAGS.pop('opt')
  21. cfg.merge_dict(FLAGS)
  22. cfg.merge_dict(opt)
  23. cfg.cfg['Global']['use_amp'] = False
  24. if cfg.cfg['Global']['output_dir'][-1] == '/':
  25. cfg.cfg['Global']['output_dir'] = cfg.cfg['Global']['output_dir'][:-1]
  26. cfg.cfg['Global']['max_text_length'] = 200
  27. cfg.cfg['Architecture']['Decoder']['max_len'] = 200
  28. cfg.cfg['Metric']['name'] = 'RecMetricLong'
  29. if cfg.cfg['Global']['pretrained_model'] is None:
  30. cfg.cfg['Global'][
  31. 'pretrained_model'] = cfg.cfg['Global']['output_dir'] + '/best.pth'
  32. trainer = Trainer(cfg, mode='eval')
  33. best_model_dict = trainer.status.get('metrics', {})
  34. trainer.logger.info('metric in ckpt ***************')
  35. for k, v in best_model_dict.items():
  36. trainer.logger.info('{}:{}'.format(k, v))
  37. data_dirs_list = [
  38. ['../ltb/long_lmdb'],
  39. ]
  40. cfg = cfg.cfg
  41. file_csv = open(
  42. cfg['Global']['output_dir'] + '/' +
  43. cfg['Global']['output_dir'].split('/')[-1] +
  44. '_result1_1_test_all_long_final_ultra_bs1.csv', 'w')
  45. csv_w = csv.writer(file_csv)
  46. for data_dirs in data_dirs_list:
  47. acc_each = []
  48. acc_each_num = []
  49. acc_each_dis = []
  50. each_long = {}
  51. for datadir in data_dirs:
  52. config_each = cfg.copy()
  53. config_each['Eval']['dataset']['data_dir_list'] = [datadir]
  54. valid_dataloader = build_dataloader(config_each, 'Eval',
  55. trainer.logger)
  56. trainer.logger.info(
  57. f'{datadir} valid dataloader has {len(valid_dataloader)} iters'
  58. )
  59. trainer.valid_dataloader = valid_dataloader
  60. metric = trainer.eval()
  61. acc_each.append(metric['acc'] * 100)
  62. acc_each_dis.append(metric['norm_edit_dis'])
  63. acc_each_num.append(metric['all_num'])
  64. trainer.logger.info('metric eval ***************')
  65. for k, v in metric.items():
  66. trainer.logger.info('{}:{}'.format(k, v))
  67. if 'each' in k:
  68. csv_w.writerow([k] + v[26:])
  69. each_long[k] = each_long.get(k, []) + [np.array(v[26:])]
  70. avg1 = np.array(acc_each) * np.array(acc_each_num) / sum(acc_each_num)
  71. csv_w.writerow(acc_each + [avg1.sum().tolist()] +
  72. [sum(acc_each) / len(acc_each)])
  73. print(acc_each + [avg1.sum().tolist()] +
  74. [sum(acc_each) / len(acc_each)])
  75. avg1 = np.array(acc_each_dis) * np.array(acc_each_num) / sum(
  76. acc_each_num)
  77. csv_w.writerow(acc_each_dis + [avg1.sum().tolist()] +
  78. [sum(acc_each_dis) / len(acc_each)])
  79. sum_all = np.array(each_long['each_len_num']).sum(0)
  80. for k, v in each_long.items():
  81. if k != 'each_len_num':
  82. v_sum_weight = (np.array(v) *
  83. np.array(each_long['each_len_num'])).sum(0)
  84. sum_all_pad = np.where(sum_all == 0, 1., sum_all)
  85. v_all = v_sum_weight / sum_all_pad
  86. v_all = np.where(sum_all == 0, 0., v_all)
  87. csv_w.writerow([k] + v_all.tolist())
  88. v_26_40 = (v_all[:10] * sum_all[:10]) / sum_all[:10].sum()
  89. csv_w.writerow([k + '26_35'] + [v_26_40.sum().tolist()] +
  90. [sum_all[:10].sum().tolist()])
  91. v_41_55 = (v_all[10:30] *
  92. sum_all[10:30]) / sum_all[10:30].sum()
  93. csv_w.writerow([k + '36_55'] + [v_41_55.sum().tolist()] +
  94. [sum_all[10:30].sum().tolist()])
  95. v_56_70 = (v_all[30:] * sum_all[30:]) / sum_all[30:].sum()
  96. csv_w.writerow([k + '56'] + [v_56_70.sum().tolist()] +
  97. [sum_all[30:].sum().tolist()])
  98. else:
  99. csv_w.writerow([k] + sum_all.tolist())
  100. file_csv.close()
  101. if __name__ == '__main__':
  102. main()