123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190 |
- import math
- import os
- import random
- import numpy as np
- import torch
- from torch.utils.data import Sampler
- class RatioSampler(Sampler):
- def __init__(self,
- data_source,
- scales,
- first_bs=512,
- fix_bs=True,
- divided_factor=[8, 16],
- is_training=True,
- max_ratio=10,
- max_bs=1024,
- seed=None):
- """
- multi scale samper
- Args:
- data_source(dataset)
- scales(list): several scales for image resolution
- first_bs(int): batch size for the first scale in scales
- divided_factor(list[w, h]): ImageNet models down-sample images by a factor, ensure that width and height dimensions are multiples are multiple of devided_factor.
- is_training(boolean): mode
- """
- # min. and max. spatial dimensions
- self.data_source = data_source
- # self.data_idx_order_list = np.array(data_source.data_idx_order_list)
- self.ds_width = data_source.ds_width
- self.seed = data_source.seed
- if self.ds_width:
- self.wh_ratio = data_source.wh_ratio
- self.wh_ratio_sort = data_source.wh_ratio_sort
- self.n_data_samples = len(self.data_source)
- self.max_ratio = max_ratio
- self.max_bs = max_bs
- if isinstance(scales[0], list):
- width_dims = [i[0] for i in scales]
- height_dims = [i[1] for i in scales]
- elif isinstance(scales[0], int):
- width_dims = scales
- height_dims = scales
- base_im_w = width_dims[0]
- base_im_h = height_dims[0]
- base_batch_size = first_bs
- base_elements = base_im_w * base_im_h * base_batch_size
- self.base_elements = base_elements
- self.base_batch_size = base_batch_size
- self.base_im_h = base_im_h
- self.base_im_w = base_im_w
- # Get the GPU and node related information
- num_replicas = torch.cuda.device_count() if torch.cuda.is_available() else 1
- # rank = dist.get_rank()
- rank = (int(os.environ['LOCAL_RANK'])
- if 'LOCAL_RANK' in os.environ else 0)
- # self.rank = rank
- # adjust the total samples to avoid batch dropping
- num_samples_per_replica = int(
- math.ceil(self.n_data_samples * 1.0 / num_replicas))
- img_indices = [idx for idx in range(self.n_data_samples)]
- self.shuffle = False
- if is_training:
- # compute the spatial dimensions and corresponding batch size
- # ImageNet models down-sample images by a factor of 32.
- # Ensure that width and height dimensions are multiples are multiple of 32.
- width_dims = [
- int((w // divided_factor[0]) * divided_factor[0])
- for w in width_dims
- ]
- height_dims = [
- int((h // divided_factor[1]) * divided_factor[1])
- for h in height_dims
- ]
- img_batch_pairs = list()
- for (h, w) in zip(height_dims, width_dims):
- if fix_bs:
- batch_size = base_batch_size
- else:
- batch_size = int(max(1, (base_elements / (h * w))))
- img_batch_pairs.append((w, h, batch_size))
- self.img_batch_pairs = img_batch_pairs
- self.shuffle = True
- np.random.seed(seed)
- random.seed(seed)
- else:
- self.img_batch_pairs = [(base_im_w, base_im_h, base_batch_size)]
- self.img_indices = img_indices
- self.n_samples_per_replica = num_samples_per_replica
- self.epoch = 0
- self.rank = rank
- self.num_replicas = num_replicas
- # self.batch_list = []
- self.current = 0
- self.is_training = is_training
- if is_training:
- indices_rank_i = self.img_indices[
- self.rank:len(self.img_indices):self.num_replicas]
- else:
- indices_rank_i = self.img_indices
- self.indices_rank_i_ori = np.array(self.wh_ratio_sort[indices_rank_i])
- self.indices_rank_i_ratio = self.wh_ratio[self.indices_rank_i_ori]
- indices_rank_i_ratio_unique = np.unique(self.indices_rank_i_ratio)
- self.indices_rank_i_ratio_unique = indices_rank_i_ratio_unique.tolist()
- self.batch_list = self.create_batch()
- self.length = len(self.batch_list)
- self.batchs_in_one_epoch_id = [i for i in range(self.length)]
- def create_batch(self):
- batch_list = []
- for ratio in self.indices_rank_i_ratio_unique:
- ratio_ids = np.where(self.indices_rank_i_ratio == ratio)[0]
- ratio_ids = self.indices_rank_i_ori[ratio_ids]
- if self.shuffle:
- random.shuffle(ratio_ids)
- num_ratio = ratio_ids.shape[0]
- if ratio < 5:
- batch_size_ratio = self.base_batch_size
- else:
- batch_size_ratio = min(
- self.max_bs,
- int(
- max(1, (self.base_elements /
- (self.base_im_h * ratio * self.base_im_h)))))
- if num_ratio > batch_size_ratio:
- batch_num_ratio = num_ratio // batch_size_ratio
- print(self.rank, num_ratio, ratio * self.base_im_h,
- batch_num_ratio, batch_size_ratio)
- ratio_ids_full = ratio_ids[:batch_num_ratio *
- batch_size_ratio].reshape(
- batch_num_ratio,
- batch_size_ratio, 1)
- w = np.full_like(ratio_ids_full, ratio * self.base_im_h)
- h = np.full_like(ratio_ids_full, self.base_im_h)
- ra_wh = np.full_like(ratio_ids_full, ratio)
- ratio_ids_full = np.concatenate([w, h, ratio_ids_full, ra_wh],
- axis=-1)
- batch_ratio = ratio_ids_full.tolist()
- if batch_num_ratio * batch_size_ratio < num_ratio:
- drop = ratio_ids[batch_num_ratio * batch_size_ratio:]
- if self.is_training:
- drop_full = ratio_ids[:batch_size_ratio - (
- num_ratio - batch_num_ratio * batch_size_ratio)]
- drop = np.append(drop_full, drop)
- drop = drop.reshape(-1, 1)
- w = np.full_like(drop, ratio * self.base_im_h)
- h = np.full_like(drop, self.base_im_h)
- ra_wh = np.full_like(drop, ratio)
- drop = np.concatenate([w, h, drop, ra_wh], axis=-1)
- batch_ratio.append(drop.tolist())
- batch_list += batch_ratio
- else:
- print(self.rank, num_ratio, ratio * self.base_im_h,
- batch_size_ratio)
- ratio_ids = ratio_ids.reshape(-1, 1)
- w = np.full_like(ratio_ids, ratio * self.base_im_h)
- h = np.full_like(ratio_ids, self.base_im_h)
- ra_wh = np.full_like(ratio_ids, ratio)
- ratio_ids = np.concatenate([w, h, ratio_ids, ra_wh], axis=-1)
- batch_list.append(ratio_ids.tolist())
- return batch_list
- def __iter__(self):
- if self.shuffle or self.is_training:
- random.seed(self.epoch)
- self.epoch += 1
- self.batch_list = self.create_batch()
- random.shuffle(self.batchs_in_one_epoch_id)
- for batch_tuple_id in self.batchs_in_one_epoch_id:
- yield self.batch_list[batch_tuple_id]
- def set_epoch(self, epoch: int):
- self.epoch = epoch
- def __len__(self):
- return self.length
|