123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238 |
- import torch
- import torch.nn as nn
- class GELU(nn.Module):
- def __init__(self, inplace=True):
- super(GELU, self).__init__()
- self.inplace = inplace
- def forward(self, x):
- return torch.nn.functional.gelu(x)
- class Swish(nn.Module):
- def __init__(self, inplace=True):
- super(Swish, self).__init__()
- self.inplace = inplace
- def forward(self, x):
- if self.inplace:
- x.mul_(torch.sigmoid(x))
- return x
- else:
- return x * torch.sigmoid(x)
- class Activation(nn.Module):
- def __init__(self, act_type, inplace=True):
- super(Activation, self).__init__()
- act_type = act_type.lower()
- if act_type == 'relu':
- self.act = nn.ReLU(inplace=inplace)
- elif act_type == 'relu6':
- self.act = nn.ReLU6(inplace=inplace)
- elif act_type == 'sigmoid':
- self.act = nn.Sigmoid()
- elif act_type == 'hard_sigmoid':
- self.act = nn.Hardsigmoid(inplace)
- elif act_type == 'hard_swish':
- self.act = nn.Hardswish(inplace=inplace)
- elif act_type == 'leakyrelu':
- self.act = nn.LeakyReLU(inplace=inplace)
- elif act_type == 'gelu':
- self.act = GELU(inplace=inplace)
- elif act_type == 'swish':
- self.act = Swish(inplace=inplace)
- else:
- raise NotImplementedError
- def forward(self, inputs):
- return self.act(inputs)
- def drop_path(x,
- drop_prob: float = 0.0,
- training: bool = False,
- scale_by_keep: bool = True):
- """Drop paths (Stochastic Depth) per sample (when applied in main path of
- residual blocks).
- This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
- the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
- See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
- changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
- 'survival rate' as the argument.
- """
- if drop_prob == 0.0 or not training:
- return x
- keep_prob = 1 - drop_prob
- shape = (x.shape[0], ) + (1, ) * (
- x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
- random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
- if keep_prob > 0.0 and scale_by_keep:
- random_tensor.div_(keep_prob)
- return x * random_tensor
- class DropPath(nn.Module):
- """Drop paths (Stochastic Depth) per sample (when applied in main path of
- residual blocks)."""
- def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True):
- super(DropPath, self).__init__()
- self.drop_prob = drop_prob
- self.scale_by_keep = scale_by_keep
- def forward(self, x):
- return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
- def extra_repr(self):
- return f'drop_prob={round(self.drop_prob,3):0.3f}'
- class Identity(nn.Module):
- def __init__(self):
- super(Identity, self).__init__()
- def forward(self, input):
- return input
- class Mlp(nn.Module):
- def __init__(
- self,
- in_features,
- hidden_features=None,
- out_features=None,
- act_layer=nn.GELU,
- drop=0.0,
- ):
- super().__init__()
- out_features = out_features or in_features
- hidden_features = hidden_features or in_features
- self.fc1 = nn.Linear(in_features, hidden_features)
- self.act = act_layer()
- self.fc2 = nn.Linear(hidden_features, out_features)
- self.drop = nn.Dropout(drop)
- def forward(self, x):
- x = self.fc1(x)
- x = self.act(x)
- x = self.drop(x)
- x = self.fc2(x)
- x = self.drop(x)
- return x
- class Attention(nn.Module):
- def __init__(self,
- dim,
- num_heads=8,
- qkv_bias=False,
- qk_scale=None,
- attn_drop=0.0,
- proj_drop=0.0):
- super().__init__()
- self.num_heads = num_heads
- head_dim = dim // num_heads
- # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
- self.scale = qk_scale or head_dim**-0.5
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
- self.attn_drop = nn.Dropout(attn_drop)
- self.proj = nn.Linear(dim, dim)
- self.proj_drop = nn.Dropout(proj_drop)
- def forward(self, x):
- B, N, C = x.shape
- qkv = (self.qkv(x).reshape(B, N, 3, self.num_heads,
- C // self.num_heads).permute(2, 0, 3, 1, 4))
- q, k, v = qkv[0], qkv[1], qkv[
- 2] # make torchscript happy (cannot use tensor as tuple)
- attn = (q @ k.transpose(-2, -1)) * self.scale
- attn = attn.softmax(dim=-1)
- attn = self.attn_drop(attn)
- x = (attn @ v).transpose(1, 2).reshape(B, N, C)
- x = self.proj(x)
- x = self.proj_drop(x)
- return x
- class Block(nn.Module):
- def __init__(
- self,
- dim,
- num_heads,
- mlp_ratio=4.0,
- qkv_bias=False,
- qk_scale=None,
- drop=0.0,
- attn_drop=0.0,
- drop_path=0.0,
- act_layer=nn.GELU,
- norm_layer=nn.LayerNorm,
- ):
- super().__init__()
- self.norm1 = norm_layer(dim)
- self.attn = Attention(
- dim,
- num_heads=num_heads,
- qkv_bias=qkv_bias,
- qk_scale=qk_scale,
- attn_drop=attn_drop,
- proj_drop=drop,
- )
- # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
- self.drop_path = DropPath(
- drop_path) if drop_path > 0.0 else nn.Identity()
- self.norm2 = norm_layer(dim)
- mlp_hidden_dim = int(dim * mlp_ratio)
- self.mlp = Mlp(in_features=dim,
- hidden_features=mlp_hidden_dim,
- act_layer=act_layer,
- drop=drop)
- def forward(self, x):
- x = x + self.drop_path(self.attn(self.norm1(x)))
- x = x + self.drop_path(self.mlp(self.norm2(x)))
- return x
- class PatchEmbed(nn.Module):
- """Image to Patch Embedding."""
- def __init__(self,
- img_size=[32, 128],
- patch_size=[4, 4],
- in_chans=3,
- embed_dim=768):
- super().__init__()
- num_patches = (img_size[1] // patch_size[1]) * (img_size[0] //
- patch_size[0])
- self.img_size = img_size
- self.patch_size = patch_size
- self.num_patches = num_patches
- self.proj = nn.Conv2d(in_chans,
- embed_dim,
- kernel_size=patch_size,
- stride=patch_size)
- def forward(self, x):
- B, C, H, W = x.shape
- # FIXME look at relaxing size constraints
- assert (
- H == self.img_size[0] and W == self.img_size[1]
- ), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
- x = self.proj(x).flatten(2).transpose(1, 2)
- return x
|