12345678910111213141516171819202122232425262728293031323334 |
- import torch
- import torch.nn.functional as F
- from torch import nn
- class CDistNetLoss(nn.Module):
- def __init__(self, smoothing=True, ignore_index=0, **kwargs):
- super(CDistNetLoss, self).__init__()
- if ignore_index >= 0 and not smoothing:
- self.loss_func = nn.CrossEntropyLoss(reduction='mean',
- ignore_index=ignore_index)
- self.smoothing = smoothing
- def forward(self, pred, batch):
- pred = pred['res']
- tgt = batch[1][:, 1:]
- pred = pred.reshape([-1, pred.shape[2]])
- tgt = tgt.reshape([-1])
- if self.smoothing:
- eps = 0.1
- n_class = pred.shape[1]
- one_hot = F.one_hot(tgt.long(), num_classes=pred.shape[1])
- torch.set_printoptions(profile='full')
- one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1)
- log_prb = F.log_softmax(pred, dim=1)
- non_pad_mask = torch.not_equal(
- tgt, torch.zeros(tgt.shape, dtype=tgt.dtype,
- device=tgt.device))
- loss = -(one_hot * log_prb).sum(dim=1)
- loss = loss.masked_select(non_pad_mask).mean()
- else:
- loss = self.loss_func(pred, tgt)
- return {'loss': loss}
|