1234567891011121314151617181920212223 |
- import torch.nn.functional as F
- from torch import nn
- class ARLoss(nn.Module):
- def __init__(self, label_smoothing=0.1, ignore_index=0, **kwargs):
- super(ARLoss, self).__init__()
- self.label_smoothing = label_smoothing
- def forward(self, pred, batch):
- max_len = batch[2].max()
- tgt = batch[1][:, 1:2 + max_len]
- pred = pred.flatten(0, 1)
- tgt = tgt.reshape([-1])
- loss = F.cross_entropy(
- pred,
- tgt,
- reduction='mean',
- label_smoothing=self.label_smoothing,
- ignore_index=pred.shape[1] + 1,
- ) # self.loss_func(pred, tgt)
- return {'loss': loss}
|