finetune_rec.md 5.3 KB

Fine-tuning Text Recognition Model of OpenOCR system

  1. Data and Weights Preparation
  2. Training
  3. Evaluation and Test
  4. ONNX Inference

Installation

Dependencies:

  • PyTorch version >= 1.13.0
  • Python version >= 3.7

    conda create -n openocr python==3.8
    conda activate openocr
    # install gpu version torch
    conda install pytorch==2.2.0 torchvision==0.17.0 torchaudio==2.2.0 pytorch-cuda=11.8 -c pytorch -c nvidia
    # or cpu version
    conda install pytorch torchvision torchaudio cpuonly -c pytorch
    

Clone this repository:

git clone https://github.com/Topdu/OpenOCR.git
cd OpenOCR
pip install -r requirements.txt

This section uses the icdar2015 recognition dataset as an example to introduce the training, evaluation, and testing of the recognition model in OpenOCR.

1. Data and Weights Preparation

1.1 Data Preparation

Note: If you want to use your own dataset, please following the following data format.

Downloading datasets from icdar2015 recognition dataset/Google Drive.

File Directory

OpenOCR/
ic15_data/
  └─ test/         Training data of the icdar dataset
  └─ train/             Testing data of the icdar dataset
  └─ rec_gt_test.txt    Training annotations of the icdar dataset
  └─ rec_gt_train.txt     Testing annotations of the icdar dataset

The provided annotation file format is as follows, where the fields are separated by "\t":

"Image file name                   label"
test/word_2077.png    Underpass

To modify the training and evaluation dataset paths in the configuration file ./configs/rec/svtrv2/repsvtr_ch.yml to your own dataset paths, for example:

Train:
  dataset:
    name: SimpleDataSet
    data_dir: ../ic15_data/  # Root directory of the training dataset
    label_file_list: ["../ic15_data/rec_gt_train.txt"]  # Path to the training label file
    ......
Eval:
  dataset:
    name: SimpleDataSet
    data_dir: ../ic15_data  # Root directory of the evaluation dataset
    label_file_list: ["../ic15_data/rec_gt_test.txt"]  # Path to the evaluation label file

1.2 Download Pre-trained Model

First download the pre-trained model.

cd OpenOCR/
wget https://github.com/Topdu/OpenOCR/releases/download/develop0.0.1/openocr_repsvtr_ch.pth
# Rec Server model
# wget https://github.com/Topdu/OpenOCR/releases/download/develop0.0.1/openocr_svtrv2_ch.pth

2. Training

2.1 Start Training

# multi-GPU training
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 tools/train_rec.py --c ./configs/rec/svtrv2/repsvtr_ch.yml --o Global.pretrained_model=./openocr_repsvtr_ch.pth
# single GPU training
CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch --nproc_per_node=1 tools/train_rec.py --c ./configs/rec/svtrv2/repsvtr_ch.yml --o Global.pretrained_model=./openocr_repsvtr_ch.pth

2.2 Load Trained Model and Continue Training

If you expect to load trained model and continue the training again, you can specify the parameter Global.checkpoints as the model path to be loaded.

For example:

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 tools/train_rec.py --c ./configs/rec/svtrv2/repsvtr_ch.yml --o Global.checkpoints=./your/trained/model

Note: The priority of Global.checkpoints is higher than that of Global.pretrained_model, that is, when two parameters are specified at the same time, the model specified by Global.checkpoints will be loaded first. If the model path specified by Global.checkpoints is wrong, the one specified by Global.pretrained_model will be loaded.

3. Evaluation and Test

3.1 Evaluation

OpenOCR calculates the word accuracy for evaluating performance of OCR recognition task.

python tools/eval_rec.py --c ./configs/rec/svtrv2/repsvtr_ch.yml --o Global.pretrained_model="{path/to/weights}/best.pth"

3.2 Test

Test the recognition result on all images in the folder or a single image:

python tools/infer_rec.py --c ./configs/rec/svtrv2/repsvtr_ch.yml --o Global.infer_img=/path/img_fold or /path/img_file Global.pretrained_model={path/to/weights}/best.pth

4. ONNX Inference

Firstly, we can convert recognition model to onnx model:

pip install onnx
python tools/toonnx.py --c ./configs/rec/svtrv2/repsvtr_ch.yml --o Global.device=cpu Global.pretrained_model={path/to/weights}/best.pth

The onnx model is saved in ./output/rec/repsvtr_ch/export_rec/rec_model.onnx.

The recognition onnx model infernce:

pip install onnxruntime
python tools/infer_rec.py --c ./configs/rec/svtrv2/repsvtr_ch.yml --o Global.backend=onnx Global.device=cpu Global.infer_img=/path/img_fold or /path/img_file Global.onnx_model_path=./output/rec/repsvtr_ch/export_rec/rec_model.onnx