svtr_base_nrtr.yml 3.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118
  1. Global:
  2. device: gpu
  3. epoch_num: 20
  4. log_smooth_window: 20
  5. print_batch_step: 10
  6. output_dir: ./output/rec/u14m_filter/svtr_base_nrtr/
  7. save_epoch_step: [15, 1]
  8. # evaluation is run every 2000 iterations
  9. eval_batch_step: [0, 500]
  10. eval_epoch_step: [0, 1]
  11. cal_metric_during_train: True
  12. pretrained_model:
  13. checkpoints:
  14. use_tensorboard: false
  15. infer_img:
  16. # for data or label process
  17. character_dict_path: &character_dict_path ./tools/utils/EN_symbol_dict.txt # 96en
  18. # ./tools/utils/ppocr_keys_v1.txt # ch
  19. max_text_length: &max_text_length 25
  20. use_space_char: &use_space_char False
  21. save_res_path: ./output/rec/u14m_filter/predicts_svtr_base_nrtr.txt
  22. use_amp: True
  23. Optimizer:
  24. name: AdamW
  25. lr: 0.00065 # for 4gpus bs256/gpu
  26. weight_decay: 0.05
  27. filter_bias_and_bn: True
  28. LRScheduler:
  29. name: OneCycleLR
  30. warmup_epoch: 1.5 # pct_start 0.075*20 = 1.5ep
  31. cycle_momentum: False
  32. Architecture:
  33. model_type: rec
  34. algorithm: NRTR
  35. in_channels: 3
  36. Transform:
  37. Encoder:
  38. name: SVTRNet
  39. img_size: [32, 128]
  40. out_char_num: 25
  41. out_channels: 256
  42. patch_merging: 'Conv'
  43. embed_dim: [128, 256, 384]
  44. depth: [6, 6, 6]
  45. num_heads: [4, 8, 12]
  46. mixer: ['Conv','Conv','Conv','Conv','Conv','Conv', 'Conv','Conv', 'Global','Global','Global','Global','Global','Global','Global','Global','Global','Global']
  47. local_mixer: [[5, 5], [5, 5], [5, 5]]
  48. last_stage: False
  49. prenorm: True
  50. Decoder:
  51. name: NRTRDecoder
  52. num_encoder_layers: -1
  53. beam_size: 0
  54. num_decoder_layers: 2
  55. nhead: 12
  56. max_len: *max_text_length
  57. Loss:
  58. name: ARLoss
  59. PostProcess:
  60. name: ARLabelDecode
  61. character_dict_path: *character_dict_path
  62. use_space_char: *use_space_char
  63. Metric:
  64. name: RecMetric
  65. main_indicator: acc
  66. is_filter: True
  67. Train:
  68. dataset:
  69. name: LMDBDataSet
  70. data_dir: ../Union14M-L-LMDB-Filtered
  71. transforms:
  72. - DecodeImagePIL: # load image
  73. img_mode: RGB
  74. - PARSeqAugPIL:
  75. - ARLabelEncode: # Class handling label
  76. character_dict_path: *character_dict_path
  77. use_space_char: *use_space_char
  78. max_text_length: *max_text_length
  79. - RecTVResize:
  80. image_shape: [32, 128]
  81. padding: False
  82. - KeepKeys:
  83. keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  84. loader:
  85. shuffle: True
  86. batch_size_per_card: 256
  87. drop_last: True
  88. num_workers: 4
  89. Eval:
  90. dataset:
  91. name: LMDBDataSet
  92. data_dir: ../evaluation/
  93. transforms:
  94. - DecodeImagePIL: # load image
  95. img_mode: RGB
  96. - ARLabelEncode: # Class handling label
  97. character_dict_path: *character_dict_path
  98. use_space_char: *use_space_char
  99. max_text_length: *max_text_length
  100. - RecTVResize:
  101. image_shape: [32, 128]
  102. padding: False
  103. - KeepKeys:
  104. keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  105. loader:
  106. shuffle: False
  107. drop_last: False
  108. batch_size_per_card: 256
  109. num_workers: 2