svtrv2_abinet_wo_lang.yml 3.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128
  1. Global:
  2. device: gpu
  3. epoch_num: 20
  4. log_smooth_window: 20
  5. print_batch_step: 10
  6. output_dir: ./output/rec/u14m_filter/svtrv2_abinet_wo_lang/
  7. eval_epoch_step: [0, 1]
  8. eval_batch_step: [0, 500]
  9. cal_metric_during_train: True
  10. pretrained_model:
  11. checkpoints:
  12. use_tensorboard: false
  13. infer_img:
  14. # for data or label process
  15. character_dict_path: ./tools/utils/EN_symbol_dict.txt
  16. max_text_length: 25
  17. use_space_char: False
  18. save_res_path: ./output/rec/u14m_filter/predicts_svtrv2_abinet_wo_lang.txt
  19. use_amp: True
  20. grad_clip_val: 20
  21. Optimizer:
  22. name: AdamW
  23. lr: 0.00065 # for 4gpus bs256/gpu
  24. weight_decay: 0.05
  25. filter_bias_and_bn: True
  26. LRScheduler:
  27. name: OneCycleLR
  28. warmup_epoch: 1.5 # pct_start 0.075*20 = 1.5ep
  29. cycle_momentum: False
  30. Architecture:
  31. model_type: rec
  32. algorithm: ABINet
  33. Transform:
  34. Encoder:
  35. name: SVTRv2LNConvTwo33
  36. use_pos_embed: False
  37. dims: [128, 256, 384]
  38. depths: [6, 6, 6]
  39. num_heads: [4, 8, 12]
  40. mixer: [['Conv','Conv','Conv','Conv','Conv','Conv'],['Conv','Conv','FGlobal','Global','Global','Global'],['Global','Global','Global','Global','Global','Global']]
  41. local_k: [[5, 5], [5, 5], [-1, -1]]
  42. sub_k: [[1, 1], [2, 1], [-1, -1]]
  43. last_stage: false
  44. feat2d: True
  45. Decoder:
  46. name: ABINetDecoder
  47. iter_size: 0
  48. num_layers: 0
  49. Loss:
  50. name: ABINetLoss
  51. PostProcess:
  52. name: ABINetLabelDecode
  53. Metric:
  54. name: RecMetric
  55. main_indicator: acc
  56. is_filter: True
  57. Train:
  58. dataset:
  59. name: RatioDataSetTVResize
  60. ds_width: True
  61. padding: false
  62. data_dir_list: ['../Union14M-L-LMDB-Filtered/filter_train_challenging',
  63. '../Union14M-L-LMDB-Filtered/filter_train_hard',
  64. '../Union14M-L-LMDB-Filtered/filter_train_medium',
  65. '../Union14M-L-LMDB-Filtered/filter_train_normal',
  66. '../Union14M-L-LMDB-Filtered/filter_train_easy',
  67. ]
  68. transforms:
  69. - DecodeImagePIL: # load image
  70. img_mode: RGB
  71. - PARSeqAugPIL:
  72. - ABINetLabelEncode:
  73. - KeepKeys:
  74. keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  75. sampler:
  76. name: RatioSampler
  77. scales: [[128, 32]] # w, h
  78. # divide_factor: to ensure the width and height dimensions can be devided by downsampling multiple
  79. first_bs: &bs 256
  80. fix_bs: false
  81. divided_factor: [4, 16] # w, h
  82. is_training: True
  83. loader:
  84. shuffle: True
  85. batch_size_per_card: *bs
  86. drop_last: True
  87. max_ratio: &max_ratio 4
  88. num_workers: 4
  89. Eval:
  90. dataset:
  91. name: RatioDataSetTVResize
  92. ds_width: True
  93. padding: False
  94. data_dir_list: [
  95. '../evaluation/CUTE80',
  96. '../evaluation/IC13_857',
  97. '../evaluation/IC15_1811',
  98. '../evaluation/IIIT5k',
  99. '../evaluation/SVT',
  100. '../evaluation/SVTP',
  101. ]
  102. transforms:
  103. - DecodeImagePIL: # load image
  104. img_mode: RGB
  105. - ABINetLabelEncode:
  106. - KeepKeys:
  107. keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  108. sampler:
  109. name: RatioSampler
  110. scales: [[128, 32]] # w, h
  111. # divide_factor: to ensure the width and height dimensions can be devided by downsampling multiple
  112. first_bs: *bs
  113. fix_bs: false
  114. divided_factor: [4, 16] # w, h
  115. is_training: False
  116. loader:
  117. shuffle: False
  118. drop_last: False
  119. batch_size_per_card: *bs
  120. max_ratio: *max_ratio
  121. num_workers: 4