# @Author: OpenOCR # @Contact: 784990967@qq.com import os import gradio as gr # gradio==4.20.0 os.environ['FLAGS_allocator_strategy'] = 'auto_growth' import cv2 import numpy as np import json import time from PIL import Image from tools.infer_e2e import OpenOCR, check_and_download_font, draw_ocr_box_txt def initialize_ocr(model_type, drop_score): return OpenOCR(mode=model_type, drop_score=drop_score) # Default model type model_type = 'mobile' drop_score = 0.4 text_sys = initialize_ocr(model_type, drop_score) # warm up 5 times if True: img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8) for i in range(5): res = text_sys(img_numpy=img) font_path = './simfang.ttf' font_path = check_and_download_font(font_path) def main(input_image, model_type_select, det_input_size_textbox=960, rec_drop_score=0.4, mask_thresh=0.3, box_thresh=0.6, unclip_ratio=1.5, det_score_mode='slow'): global text_sys, model_type # Update OCR model if the model type changes if model_type_select != model_type: model_type = model_type_select text_sys = initialize_ocr(model_type, rec_drop_score) img = input_image[:, :, ::-1] starttime = time.time() results, time_dict, mask = text_sys( img_numpy=img, return_mask=True, det_input_size=int(det_input_size_textbox), thresh=mask_thresh, box_thresh=box_thresh, unclip_ratio=unclip_ratio, score_mode=det_score_mode) elapse = time.time() - starttime save_pred = json.dumps(results[0], ensure_ascii=False) image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) boxes = [res['points'] for res in results[0]] txts = [res['transcription'] for res in results[0]] scores = [res['score'] for res in results[0]] draw_img = draw_ocr_box_txt( image, boxes, txts, scores, drop_score=rec_drop_score, font_path=font_path, ) mask = mask[0, 0, :, :] > mask_thresh return save_pred, elapse, draw_img, mask.astype('uint8') * 255 def get_all_file_names_including_subdirs(dir_path): all_file_names = [] for root, dirs, files in os.walk(dir_path): for file_name in files: all_file_names.append(os.path.join(root, file_name)) file_names_only = [os.path.basename(file) for file in all_file_names] return file_names_only def list_image_paths(directory): image_extensions = ('.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff') image_paths = [] for root, dirs, files in os.walk(directory): for file in files: if file.lower().endswith(image_extensions): relative_path = os.path.relpath(os.path.join(root, file), directory) full_path = os.path.join(directory, relative_path) image_paths.append(full_path) image_paths = sorted(image_paths) return image_paths def find_file_in_current_dir_and_subdirs(file_name): for root, dirs, files in os.walk('.'): if file_name in files: relative_path = os.path.join(root, file_name) return relative_path e2e_img_example = list_image_paths('./OCR_e2e_img') if __name__ == '__main__': css = '.image-container img { width: 100%; max-height: 320px;}' with gr.Blocks(css=css) as demo: gr.HTML("""

OpenOCR

准确高效的通用 OCR 系统 (由FVL实验室 OCR Team 创建) [本地快速部署]

""" ) with gr.Row(): with gr.Column(scale=1): input_image = gr.Image(label='Input image', elem_classes=['image-container']) examples = gr.Examples(examples=e2e_img_example, inputs=input_image, label='Examples') downstream = gr.Button('Run') # 添加参数调节组件 with gr.Column(): with gr.Row(): det_input_size_textbox = gr.Number( label='Detection Input Size', value=960, info='检测网络输入尺寸的最长边,默认为960。') det_score_mode_dropdown = gr.Dropdown( ['slow', 'fast'], value='slow', label='Detection Score Mode', info='文本框的置信度计算模式,默认为 slow。slow 模式计算速度较慢,但准确度较高。fast 模式计算速度较快,但准确度较低。' ) with gr.Row(): rec_drop_score_slider = gr.Slider( 0.0, 1.0, value=0.4, step=0.01, label='Recognition Drop Score', info='识别置信度阈值,默认值为0.4。低于该阈值的识别结果和对应的文本框被丢弃。') mask_thresh_slider = gr.Slider( 0.0, 1.0, value=0.3, step=0.01, label='Mask Threshold', info='Mask 阈值,用于二值化 mask,默认值为0.3。如果存在文本截断时,请调低该值。') with gr.Row(): box_thresh_slider = gr.Slider( 0.0, 1.0, value=0.6, step=0.01, label='Box Threshold', info='文本框置信度阈值,默认值为0.6。如果存在文本被漏检时,请调低该值。') unclip_ratio_slider = gr.Slider( 1.5, 2.0, value=1.5, step=0.05, label='Unclip Ratio', info='文本框解析时的膨胀系数,默认值为1.5。值越大文本框越大。') # 模型选择组件 model_type_dropdown = gr.Dropdown( ['mobile', 'server'], value='mobile', label='Model Type', info='选择 OCR 模型类型:高效率模型mobile,高精度模型server。') with gr.Column(scale=1): img_mask = gr.Image(label='mask', interactive=False, elem_classes=['image-container']) img_output = gr.Image(label=' ', interactive=False, elem_classes=['image-container']) output = gr.Textbox(label='Result') confidence = gr.Textbox(label='Latency') downstream.click(fn=main, inputs=[ input_image, model_type_dropdown, det_input_size_textbox, rec_drop_score_slider, mask_thresh_slider, box_thresh_slider, unclip_ratio_slider, det_score_mode_dropdown ], outputs=[ output, confidence, img_output, img_mask, ]) demo.launch(share=True)