from __future__ import absolute_import from __future__ import division from __future__ import print_function from pathlib import Path import time import numpy as np import os import sys __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(__dir__) sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..'))) os.environ['FLAGS_allocator_strategy'] = 'auto_growth' import cv2 import json from tools.engine.config import Config from tools.utility import ArgsParser from tools.utils.logging import get_logger from tools.utils.utility import get_image_file_list logger = get_logger() root_dir = Path(__file__).resolve().parent DEFAULT_CFG_PATH_DET = str(root_dir / '../configs/det/dbnet/repvit_db.yml') MODEL_NAME_DET = './openocr_det_repvit_ch.pth' # 模型文件名称 DOWNLOAD_URL_DET = 'https://github.com/Topdu/OpenOCR/releases/download/develop0.0.1/openocr_det_repvit_ch.pth' # 模型文件 URL MODEL_NAME_DET_ONNX = './openocr_det_model.onnx' # 模型文件名称 DOWNLOAD_URL_DET_ONNX = 'https://github.com/Topdu/OpenOCR/releases/download/develop0.0.1/openocr_det_model.onnx' # 模型文件 URL def check_and_download_model(model_name: str, url: str): """ 检查预训练模型是否存在,若不存在则从指定 URL 下载到固定缓存目录。 Args: model_name (str): 模型文件的名称,例如 "model.pt" url (str): 模型文件的下载地址 Returns: str: 模型文件的完整路径 """ if os.path.exists(model_name): return model_name # 固定缓存路径为用户主目录下的 ".cache/openocr" cache_dir = Path.home() / '.cache' / 'openocr' model_path = cache_dir / model_name # 如果模型文件已存在,直接返回路径 if model_path.exists(): logger.info(f'Model already exists at: {model_path}') return str(model_path) # 如果文件不存在,下载模型 logger.info(f'Model not found. Downloading from {url}...') # 创建缓存目录(如果不存在) cache_dir.mkdir(parents=True, exist_ok=True) try: # 下载文件 import urllib.request with urllib.request.urlopen(url) as response, open(model_path, 'wb') as out_file: out_file.write(response.read()) logger.info(f'Model downloaded and saved at: {model_path}') return str(model_path) except Exception as e: logger.error(f'Error downloading the model: {e}') # 提示用户手动下载 logger.error( f'Unable to download the model automatically. ' f'Please download the model manually from the following URL:\n{url}\n' f'and save it to: {model_name} or {model_path}') raise RuntimeError( f'Failed to download the model. Please download it manually from {url} ' f'and save it to {model_path}') from e def replace_batchnorm(net): import torch for child_name, child in net.named_children(): if hasattr(child, 'fuse'): fused = child.fuse() setattr(net, child_name, fused) replace_batchnorm(fused) elif isinstance(child, torch.nn.BatchNorm2d): setattr(net, child_name, torch.nn.Identity()) else: replace_batchnorm(child) def draw_det_res(dt_boxes, img, img_name, save_path): src_im = img for box in dt_boxes: box = np.array(box).astype(np.int32).reshape((-1, 1, 2)) cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2) if not os.path.exists(save_path): os.makedirs(save_path) save_path = os.path.join(save_path, os.path.basename(img_name)) cv2.imwrite(save_path, src_im) def set_device(device, numId=0): import torch if device == 'gpu' and torch.cuda.is_available(): device = torch.device(f'cuda:{numId}') else: logger.info('GPU is not available, using CPU.') device = torch.device('cpu') return device class OpenDetector(object): def __init__(self, config=None, backend='torch', onnx_model_path=None, numId=0): """ Args: config (dict, optional): 配置信息。默认为None。 backend (str): 'torch' 或 'onnx' onnx_model_path (str): ONNX模型路径(仅当backend='onnx'时需要) numId (int, optional): 设备编号。默认为0。 """ if config is None: config = Config(DEFAULT_CFG_PATH_DET).cfg self._init_common(config) backend = backend if config['Global'].get( 'backend', None) is None else config['Global']['backend'] self.backend = backend if backend == 'torch': import torch self.torch = torch if config['Architecture']['algorithm'] == 'DB_mobile': if not os.path.exists(config['Global']['pretrained_model']): config['Global'][ 'pretrained_model'] = check_and_download_model( MODEL_NAME_DET, DOWNLOAD_URL_DET) self._init_torch_model(config, numId) elif backend == 'onnx': from tools.infer.onnx_engine import ONNXEngine onnx_model_path = onnx_model_path if config['Global'].get( 'onnx_model_path', None) is None else config['Global']['onnx_model_path'] if onnx_model_path is None: if config['Architecture']['algorithm'] == 'DB_mobile': onnx_model_path = check_and_download_model( MODEL_NAME_DET_ONNX, DOWNLOAD_URL_DET_ONNX) else: raise ValueError('ONNX模式需要指定onnx_model_path参数') self.onnx_det_engine = ONNXEngine( onnx_model_path, use_gpu=config['Global']['device'] == 'gpu') else: raise ValueError("backend参数必须是'torch'或'onnx'") def _init_common(self, config): from opendet.postprocess import build_post_process from opendet.preprocess import create_operators, transform global_config = config['Global'] # create data ops self.transform = transform transforms = [] for op in config['Eval']['dataset']['transforms']: op_name = list(op)[0] if 'Label' in op_name: continue elif op_name == 'KeepKeys': op[op_name]['keep_keys'] = ['image', 'shape'] transforms.append(op) self.ops = create_operators(transforms, global_config) # build post process self.post_process_class = build_post_process(config['PostProcess'], global_config) def _init_torch_model(self, config, numId=0): from opendet.modeling import build_model as build_det_model from tools.utils.ckpt import load_ckpt # build model self.model = build_det_model(config['Architecture']) self.model.eval() load_ckpt(self.model, config) if config['Architecture']['algorithm'] == 'DB_mobile': replace_batchnorm(self.model.backbone) self.device = set_device(config['Global']['device'], numId=numId) self.model.to(device=self.device) def _inference_onnx(self, images): # ONNX输入需要为numpy数组 return self.onnx_det_engine.run(images) def __call__(self, img_path=None, img_numpy_list=None, img_numpy=None, return_mask=False, **kwargs): """ 对输入图像进行处理,并返回处理结果。 Args: img_path (str, optional): 图像文件路径。默认为 None。 img_numpy_list (list, optional): 图像数据列表,每个元素为 numpy 数组。默认为 None。 img_numpy (numpy.ndarray, optional): 图像数据,numpy 数组格式。默认为 None。 Returns: list: 包含处理结果的列表。每个元素为一个字典,包含 'boxes' 和 'elapse' 两个键。 'boxes' 的值为检测到的目标框点集,'elapse' 的值为处理时间。 Raises: Exception: 若没有提供图像路径或 numpy 数组,则抛出异常。 """ if img_numpy is not None: img_numpy_list = [img_numpy] num_img = 1 elif img_path is not None: img_path = get_image_file_list(img_path) num_img = len(img_path) elif img_numpy_list is not None: num_img = len(img_numpy_list) else: raise Exception('No input image path or numpy array.') results = [] for img_idx in range(num_img): if img_numpy_list is not None: img = img_numpy_list[img_idx] data = {'image': img} elif img_path is not None: with open(img_path[img_idx], 'rb') as f: img = f.read() data = {'image': img} data = self.transform(data, self.ops[:1]) if kwargs.get('det_input_size', None) is not None: data['max_sile_len'] = kwargs['det_input_size'] batch = self.transform(data, self.ops[1:]) images = np.expand_dims(batch[0], axis=0) shape_list = np.expand_dims(batch[1], axis=0) t_start = time.time() if self.backend == 'torch': images = self.torch.from_numpy(images).to(device=self.device) with self.torch.no_grad(): preds = self.model(images) kwargs['torch_tensor'] = True elif self.backend == 'onnx': preds_det = self._inference_onnx(images) preds = {'maps': preds_det[0]} kwargs['torch_tensor'] = False t_cost = time.time() - t_start post_result = self.post_process_class(preds, [None, shape_list], **kwargs) info = {'boxes': post_result[0]['points'], 'elapse': t_cost} if return_mask: if isinstance(preds['maps'], self.torch.Tensor): mask = preds['maps'].detach().cpu().numpy() else: mask = preds['maps'] info['mask'] = mask results.append(info) return results def main(cfg): is_visualize = cfg['Global'].get('is_visualize', False) model = OpenDetector(cfg) save_res_path = './det_results/' if not os.path.exists(save_res_path): os.makedirs(save_res_path) sample_num = 0 with open(save_res_path + '/det_results.txt', 'wb') as fout: for file in get_image_file_list(cfg['Global']['infer_img']): preds_result = model(img_path=file)[0] logger.info('{} infer_img: {}, time cost: {}'.format( sample_num, file, preds_result['elapse'])) boxes = preds_result['boxes'] dt_boxes_json = [] for box in boxes: tmp_json = {} tmp_json['points'] = np.array(box).tolist() dt_boxes_json.append(tmp_json) if is_visualize: src_img = cv2.imread(file) draw_det_res(boxes, src_img, file, save_res_path) logger.info('The detected Image saved in {}'.format( os.path.join(save_res_path, os.path.basename(file)))) otstr = file + '\t' + json.dumps(dt_boxes_json) + '\n' logger.info('results: {}'.format(json.dumps(dt_boxes_json))) fout.write(otstr.encode()) sample_num += 1 logger.info( f"Results saved to {os.path.join(save_res_path, 'det_results.txt')}.)" ) logger.info('success!') if __name__ == '__main__': FLAGS = ArgsParser().parse_args() cfg = Config(FLAGS.config) FLAGS = vars(FLAGS) opt = FLAGS.pop('opt') cfg.merge_dict(FLAGS) cfg.merge_dict(opt) main(cfg.cfg)