# OpenOCR: A general OCR system with accuracy and efficiency ⚡\[[Quick Start](#quick-start)\] \[[Model](https://github.com/Topdu/OpenOCR/releases/tag/develop0.0.1)\] \[[ModelScope Demo](https://modelscope.cn/studios/topdktu/OpenOCR-Demo)\] \[[Hugging Face Demo](https://huggingface.co/spaces/topdu/OpenOCR-Demo)\] \[[Local Demo](#local-demo)\] \[[PaddleOCR Implementation](https://paddlepaddle.github.io/PaddleOCR/latest/algorithm/text_recognition/algorithm_rec_svtrv2.html)\] We proposed strategies to comprehensively enhance CTC-based STR models and developed a novel CTC-based method, [SVTRv2](../configs/rec/svtrv2/). SVTRv2 can outperform previous attention-based STR methods in terms of accuracy while maintaining the advantages of CTC, such as fast inference and robust recognition of long text. These features make SVTRv2 particularly well-suited for practical applications. To this end, building on SVTRv2, we develop a practical version of the model from scratch on publicly available Chinese and English datasets. Combined with a detection model, this forms a general OCR system with accuracy and efficiency, **OpenOCR**. Comparing with [PP-OCRv4](https://paddlepaddle.github.io/PaddleOCR/latest/ppocr/model_list.html) baseline in the [OCR competition leaderboard](https://aistudio.baidu.com/competition/detail/1131/0/leaderboard), OpenOCR (mobile) achieve a 4.5% improvement in terms of accuracy, while preserving quite similar inference speed on NVIDIA 1080Ti GPU. | Model | Config | E2E Metric | Downloading | | ------------------- | ----------------------------------------------------------------------------------- | ---------- | ---------------------------------------------------------------------------------------- | | PP-OCRv4 | | 62.77% | [PaddleOCR Model List](../../ppocr/model_list.md) | | SVTRv2 (Rec Server) | [configs/rec/svtrv2/svtrv2_ch.yml](../configs/rec/svtrv2/svtrv2_ch.yml) | 68.81% | [Google Dirve](https://drive.google.com/file/d/13LXbIVEyx2Aat3X_vVte4JQgQ7yJWdxH/view?usp=drive_link), [Github Released](https://github.com/Topdu/OpenOCR/releases/download/develop0.0.1/openocr_svtrv2_ch.pth) | | RepSVTR (Mobile) | [Rec: configs/rec/svtrv2/repsvtr_ch.yml](../configs/rec/svtrv2/repsvtr_ch.yml)
[Det: configs/det/dbnet/repvit_db.yml](../configs/det/dbnet/repvit_db.yml) | 67.22% | [Rec: Google Drive](https://drive.google.com/file/d/1DNfarP_UmTqZnENjmmQHCexqzVmrIfLF/view?usp=drive_link), [Github Released](https://github.com/Topdu/OpenOCR/releases/download/develop0.0.1/openocr_repsvtr_ch.pth)
[Det: Google Drive](https://drive.google.com/file/d/1eR6k5NitCvFEiGlYx1lAArVupIszfEmM/view?usp=drive_link), [Github Released](https://github.com/Topdu/OpenOCR/releases/download/develop0.0.1/openocr_det_repvit_ch.pth) | ## Quick Start **Note**: OpenOCR supports inference using both the ONNX and Torch frameworks, with the dependency environments for the two frameworks being isolated. When using ONNX for inference, there is no need to install Torch, and vice versa. ### 1. ONNX Inference #### Install OpenOCR and Dependencies: ```shell pip install openocr-python pip install onnxruntime ``` #### Usage: ```python from openocr import OpenOCR onnx_engine = OpenOCR(backend='onnx', device='cpu') img_path = '/path/img_path or /path/img_file' result, elapse = onnx_engine(img_path) ``` ### 2. Pytorch inference #### Dependencies: - [PyTorch](http://pytorch.org/) version >= 1.13.0 - Python version >= 3.7 ```shell conda create -n openocr python==3.8 conda activate openocr # install gpu version torch conda install pytorch==2.2.0 torchvision==0.17.0 torchaudio==2.2.0 pytorch-cuda=11.8 -c pytorch -c nvidia # or cpu version conda install pytorch torchvision torchaudio cpuonly -c pytorch ``` After installing dependencies, the following two installation methods are available. Either one can be chosen. #### 2.1. Python Modules **Install OpenOCR**: ```shell pip install openocr-python ``` **Usage**: ```python from openocr import OpenOCR engine = OpenOCR() img_path = '/path/img_path or /path/img_file' result, elapse = engine(img_path) # Server mode # engine = OpenOCR(mode='server') ``` #### 2.2. Clone this repository: ```shell git clone https://github.com/Topdu/OpenOCR.git cd OpenOCR pip install -r requirements.txt wget https://github.com/Topdu/OpenOCR/releases/download/develop0.0.1/openocr_det_repvit_ch.pth wget https://github.com/Topdu/OpenOCR/releases/download/develop0.0.1/openocr_repsvtr_ch.pth # Rec Server model # wget https://github.com/Topdu/OpenOCR/releases/download/develop0.0.1/openocr_svtrv2_ch.pth ``` **Usage**: ```shell # OpenOCR system: Det + Rec model python tools/infer_e2e.py --img_path=/path/img_fold or /path/img_file # Det model python tools/infer_det.py --c ./configs/det/dbnet/repvit_db.yml --o Global.infer_img=/path/img_fold or /path/img_file # Rec model python tools/infer_rec.py --c ./configs/rec/svtrv2/repsvtr_ch.yml --o Global.infer_img=/path/img_fold or /path/img_file ``` #### Local Demo ```shell pip install gradio==4.20.0 wget https://github.com/Topdu/OpenOCR/releases/download/develop0.0.1/OCR_e2e_img.tar tar xf OCR_e2e_img.tar # start demo python demo_gradio.py ``` ## Fine-tuning on a Custom dataset Referring to [Finetuning Det](./finetune_det.md) and [Finetuning Rec](./finetune_rec.md). ## Exporting to ONNX Engine ### Export ONNX model ```shell pip install onnx python tools/toonnx.py --c configs/rec/svtrv2/repsvtr_ch.yml --o Global.device=cpu python tools/toonnx.py --c configs/det/dbnet/repvit_db.yml --o Global.device=cpu ``` The det onnx model is saved in `./output/det_repsvtr_db/export_det/det_model.onnx`. The rec onnx model is saved in `./output/rec/repsvtr_ch/export_rec/rec_model.onnx`. ### Inference with ONNXRuntime ```shell pip install onnxruntime # OpenOCR system: Det + Rec model python tools/infer_e2e.py --img_path=/path/img_fold or /path/img_file --backend=onnx --device=cpu --onnx_det_model_path=./output/det_repsvtr_db/export_det/det_model.onnx --onnx_rec_model_path=output/rec/repsvtr_ch/export_rec/rec_model.onnx # Det model python tools/infer_det.py --c ./configs/det/dbnet/repvit_db.yml --o Global.backend=onnx Global.device=cpu Global.infer_img=/path/img_fold or /path/img_file Global.onnx_model_path=./output/det_repsvtr_db/export_det/det_model.onnx # Rec model python tools/infer_rec.py --c ./configs/rec/svtrv2/repsvtr_ch.yml --o Global.backend=onnx Global.device=cpu Global.infer_img=/path/img_fold or /path/img_file Global.onnx_model_path=./output/rec/repsvtr_ch/export_rec/rec_model.onnx ``` ## Results Showcase ### Detection results
### Recognition results
### Det + Rec System results
### **Detection Model Performance** In the examples provided, OpenOCR's detection model generates bounding boxes that are generally more comprehensive and better aligned with the boundaries of text instances compared to PP-OCRv4. In addition, OpenOCR excels in distinguishing separate text instances, avoiding errors such as merging two distinct text instances into one or splitting a single instance into multiple parts. This indicates superior handling of **semantic completeness and spatial understanding**, making it particularly effective for complex layouts. ### **Recognition Model Generalization** OpenOCR's recognition model demonstrates enhanced generalization capabilities when compared to PP-OCRv4. It performs exceptionally well in recognizing text under difficult conditions, such as: - Artistic or stylized fonts. - Handwritten text. - Blurry or low-resolution images. - Incomplete or occluded text. Remarkably, the **OpenOCR mobile recognition model** delivers results comparable to the larger and more resource-intensive **PP-OCRv4 server model**. This highlights OpenOCR's efficiency and accuracy, making it a versatile solution across different hardware platforms. ### **System used in Real-World Scenarios** As shown in Det + Rec System results, OpenOCR demonstrates outstanding performance in practical scenarios, including documents, tables, invoices, and similar contexts. This underscores its potential as a **general-purpose OCR system**. It is capable of adapting to diverse use cases with high accuracy and reliability. ## Citation If you find our method useful for your reserach, please cite: ```bibtex @inproceedings{Du2024SVTRv2, title={SVTRv2: CTC Beats Encoder-Decoder Models in Scene Text Recognition}, author={Yongkun Du and Zhineng Chen and Hongtao Xie and Caiyan Jia and Yu-Gang Jiang}, booktitle={ICCV}, year={2025} } ```